
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325473565

Prealgebra via Python Programming: First steps to perform large scale

computational tasks in the Sciences and Engineerings

Book · May 2018

CITATIONS

0
READS

5,372

1 author:

Some of the authors of this publication are also working on these related projects:

Machine Learning on Teaching and Learning View project

Machine Learning on Teaching and Learning View project

Sergio Rojas

Simon Bolívar University

37 PUBLICATIONS   266 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Sergio Rojas on 31 May 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325473565_Prealgebra_via_Python_Programming_First_steps_to_perform_large_scale_computational_tasks_in_the_Sciences_and_Engineerings?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325473565_Prealgebra_via_Python_Programming_First_steps_to_perform_large_scale_computational_tasks_in_the_Sciences_and_Engineerings?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Machine-Learning-on-Teaching-and-Learning?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Machine-Learning-on-Teaching-and-Learning-2?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio-Rojas-11?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio-Rojas-11?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Simon_Bolivar_University?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio-Rojas-11?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio-Rojas-11?enrichId=rgreq-9e916ba3ed6ad1726ec7c2d654dbbd18-XXX&enrichSource=Y292ZXJQYWdlOzMyNTQ3MzU2NTtBUzo2MzIzNzM1MDI4MjAzNTNAMTUyNzc4MTAwMDE4Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


PREALGEBRA
VIA

PYTHON PROGRAMMING
First steps to perform large scale computational

tasks in the Sciences and Engineerings

SERGIO ROJAS (AUTOR-EDITOR)
Physics Department

Universidad Simón Boĺıvar (USB)

Venezuela

CARACAS - VENEZUELA - 2018



Prealgebra via Python Programming:
First steps to perform large scale computational tasks in the Sciences

and Engineerings

Sergio Rojas
Physics Department

Universidad Simón Bolívar
Venezuela

Caracas-Venezuela
May 31, 2018



i

Prealgebra via Python Programming: First steps to perform large scale computational tasks in
the Sciences and Engineerings
by Sergio Rojas
Copyright © 2018 by Sergio Rojas (srojas@usb.ve)
All rights reserved.

This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 Interna-
tional License (CC BY 4.0) [http://creativecommons.org/licenses/by-nc/4.0/), which permits
any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author and the source.

Typesetting by the Author and Editor (Sergio Rojas) using the memoir LATEX package.

Even though we have been carefull to be sure that the content in this book was true and accurate at the moment
of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be found in the book. Accordingly, no warranty, express or implied, is made with
respect to the material contained herein. It is the solely responsibility of the user any damage she or he could
suffer by using the content of this book.

Editor: Sergio Rojas

Legal Deposit/Depósito Legal: MI2018000516
ISBN: 978-980-18-0123-8

Draft copy as of May 31, 2018
Electronic publication:
https://github.com/rojassergio/



About the Author

Sergio Rojas (http://prof.usb.ve/srojas/)
Sergio Rojas is currently a Full Professor of Physics at the Universidad Simón Bolívar, Venezuela.
Regarding his formal studies, he earned in 1991 a B.S in Physics with Thesis on Numerical Rel-
ativity from the Universidad de Oriente, Estado Sucre, Venezuela, and then, in 1998, he earned
a Ph.D. in Physics from the Physics Department of the City College of the City University
of New York, where he worked on the applications of Fluid Dynamics in the flow of fluids in
porous media, gaining and developing since then a vast experience in programming as an aid
to scientific research via fortran77/90 and C/C++. In 2001, he also earned a Master’s degree
in computational finance from The Oregon Graduate Institute of Science and Technology.

Sergio’s teaching activities involve lecturing undergraduate and graduated physics courses at
his home university, Universidad Simón Bolívar, Venezuela, including a course on Monte Carlo
Methods and other on Computational Finance. His research interests include physics education
research, fluid flow in porous media, and the application of the theory of complex systems
and statistical mechanics in Financial Engineering. More recently, Sergio has been involved in
Machine Learning and its applications in Science and Engineering via the Python programming
language.

Sergio’s is coauthor of the book Learning SciPy for Numerical and Scientific Computing - Sec-
ond Edition (2015) [ https://www.packtpub.com/big-data-and-business-intelligence/
learning-scipy-numerical-and-scientific-computing-second-edition ] and coau-
thor Editor of the self-published book (in Spanish) Aprendiendo a programar en Python con mi com-
putador: Primeros pasos rumbo a cómputos de gran escala en las Ciencias e Ingenierías (2016) [
https://www.researchgate.net/publication/301293668 ] and the author of the video
course Numerical and Scientific Computing with SciPy (2017) [ https://www.packtpub.com/
big-data-and-business-intelligence/numerical-and-scientific-computing-scipy-
video ].

i



Preface
“O Inventamos o Erramos.”

Simón Rodriguez
Maestro de América
1771-1854

This book was written for students and instructors who want to learn how to use a computer
for other than the most common uses, such as web browsing, document creation, or paying bills
online. This book is for anyone who wants to perform computational tasks that they design.
In other words, if you wish to learn how to program a computer, this book is for you.

Because prealgebra is a subject that practically everyone is supposed to learn in grade school,
it provides a platform to introduce basic computer programming concepts. Consequently, this
book should also be of interest to students in middle or high school who want to learn how
to program, and who are willing to invest the time and effort in learning a programming lan-
guage that they could continue using throughout their schooling and in their professional life.
Similarly, this book could also be of interest to pre-service and in-service mathematics teachers
wishing to have at their disposal a complementary tool to assist in fostering understanding,
competency, and interest in mathematics among their students. This book can be integrated
with the teachers’ curriculum as way to tackle non-traditional math problems using an inexpen-
sive modern computer language. By the end of the book, a reader will have learned enough to
be able to write a preliminary, step-by-step one variable equation solver that can be expanded
in the future to use with more complex equations. In other words, by the end of the book,
you will be able to write code that programs their machines to solve equations. This code is
foundational and readers are ecouraged to learn on their own how to build on it to suit their
mathematics learning needs.

Accordingly, the presentation of topics in the book, as seen in the Table of Contents, will
conform to most of the standard course work covered by prealgebra textbook authors, and
will consider topics such as whole numbers, integers, fractions, and decimals. Nevertheless,
this book is not yet another prealgebra textbook. Think of this book as a complement to a
prealgebra textbook. In other words, this book is not meant to replace the teaching of concepts
of prealgebra in the classroom, but to help reinforce the learning of those topics by learning how
to write programs (in Python) that students can use to practice prealgebra concepts discussed
in their classes. This book could even lead you to rethink some of these topics, even if you
already know them very well.

ii



iii Preface

At its most basic level, programming is basically the craft of writing instructions that a com-
puter can interpret and execute. There are many computer languages, and to learn program-
ming, one needs to choose a particular computer language. In writing this book, we choose
the free and open source Python (scripting) programming language, because it works in
practically every operating system in use (including the also free and open source Linux
operating system, a version of which we used to write this book).

To get a bit more technical, Python is a high level computing language which involves a trans-
lation of the user’s instructions before those instructions can be understood by the computer.
In this case, the interpreter is Python, and the instructions are expressed in standard alpha-
numeric English characters following a rigorous syntax based on such set of characters. Al-
though this is also true for any other high level computing language like C/C++ or Fortran, a
nice feature that makes the language Python suitable for prealgebra courses is that it comes
with a symbolic algebraic computational system module (SymPy), which permits the execution
of algebraic operations symbolically. That is, as required in many prealgebra operations, we
can use symbols, instead of numbers, to make computations and obtain analytical results.

But the module SymPy also allows the carrying out of numerical computations. So we will
be making heavy use of the module SymPy to facilitate and enhance prealgebra learning,
mainly by performing algebraic operations and numerical computations. Please note that Py-
thon comes with other modules (namely NumPy and SciPy) that are the standard modules
to perform numerical computations whenever efficiency is an issue. In this introductory book
we will not make extensive use of those modules. We will introduce the Matplotlib module for
visualizations. You will learn more about this in the introductory remarks of the first chapter,
starting on page 1.

As mentioned, Python is compatible with practically every operating system currently in use.
In writing the Python programs (also called scripts) that you will learn about in this book,
we used the free and open source version of the Linux operating system called Ubuntu.
However, the scripts should work as given in any other Python set up.

Free and open source programming languages make it easy and inexpensive for any school to
pursue the idea that everyone needs to learn how to program early on. The task of programming
helps to develop the ability to focus attention as well as to the ability to think consciously
and critically, which reduces the tendency toward learning by rote mechanical memorization.
Accordingly, this book can be used by anyone desiring to awaken and develop the skills of active
deep thinkers.

Beware, however, that since simplicity and clarity drive the write-up of this book, we are not
going to use expert preferred programming constructs, which are efficient, but can seem obscure
to new learners. You can consult more advanced texts covering these kinds of expressions or
scripts once you learn the basics of programming in Python in this book.

We encourage readers to send us comments, ask questions, and provide information on errors
or broken web links via email to srojas@usb.ve or to alternative contacts found at the
companion web site for this book at [https://github.com/rojassergio/Python-

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



iv Preface

Prealgebra]. More importantly, if you find yourself in the mood to collaborate to improve
the readability and/or enhance the content of the book, feel free to contact me at the above
email address.

Sergio Rojas
May 31, 2018

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Contents

Preface ii

Contents v

1 Getting, installing, and testing the programming python environment 1
1.1 Motivational remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The terminal, system shell or console of commands . . . . . . . . . . . . . . . . 3
1.3 Installing Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Checking that we have what is needed for our journey with Python and Preal-

gebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Running Python packages test suite (optional) . . . . . . . . . . . . . . . . . . . 13

1.5.1 Executing the NumPy test suite . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Executing the SciPy test suite . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.3 Executing the SymPy test suite . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Appendix of Chapter 1 17
A.1 Some Linux commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Exercises of Chapter 1 19

References of Chapter 1 20
Books and/or Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
References on the WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Whole numbers in Python 22
2.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Starting the IPython console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Computing with Whole Numbers in Python . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Basic Whole Numbers operations in Python . . . . . . . . . . . . . . . . 25
2.4 Variables in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Reserved words in Python . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Grouping basic Whole Number operations in Python . . . . . . . . . . . . . . . 30
2.6 The wheat problem: a computational example involving a big Whole Number . 31

v



vi CONTENTS

2.7 Repetitive computations in Python . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.1 Python List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.2 The wheat problem via the Python for loop . . . . . . . . . . . . . . . . 37
2.7.3 Relational operators in Python . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.4 The wheat problem via the Python while loop . . . . . . . . . . . . . . . 44

2.8 The guess two digits game explained using SymPy . . . . . . . . . . . . . . . . . 47
2.9 Some common errors due to unfollowing Python rules . . . . . . . . . . . . . . 53
2.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix of Chapter 2 59
A.1 Proof that for all n ≥ 0, 20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1 . . . . . . . . . . . . 59

Exercises of Chapter 2 61

References of Chapter 2 64
Books and/or Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
References on the WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Applications involving Whole Numbers via Python 65
3.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Writing program using an appropriated text editor . . . . . . . . . . . . . . . . 66

3.2.1 A brief introduction to the gedit editorindexText editor Gedit . . . . . . 66
3.3 The Python if statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 The simple if statement . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 The if--else statement . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.3 The if--elif--else statement . . . . . . . . . . . . . . . . . . . 73

3.4 The Python and (&) and or (|) operators . . . . . . . . . . . . . . . . . . . . . 76
3.5 Statistical measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Computing means or averages using Python . . . . . . . . . . . . . . . . 79
3.5.2 Computing the median of a set of values using Python . . . . . . . . . . 83
3.5.3 Computing the mode of a set of values using Python . . . . . . . . . . . 89
3.5.4 Computing statistical measures via Python statistical modules . . . . . . 96

3.6 Generating pseudo-random data sets for program validation and verification . . 98
3.7 Writing your own Python Functions . . . . . . . . . . . . . . . . . . . . . . . . 101
3.8 Miscellaneous application programs . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.8.1 Factors of a whole number . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.8.2 Is this a prime number? . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.8.2.1 Generating prime numbers: the Sieve of Eratosthenes algorithm 109
3.8.3 Is this an abundant number? . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.8.4 Is this a perfect number? . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.8.5 Greatest common divisor (GCD) or greatest common factor (GCF) of

natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.8.6 Prime Factorization of whole numbers . . . . . . . . . . . . . . . . . . . 118

3.9 Solving equations involving whole numbers via SymPy . . . . . . . . . . . . . . 119

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



vii CONTENTS

3.9.1 The sailors, the coconuts, and the monkeys problem . . . . . . . . . . . 127
3.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix of Chapter 3 133
A.1 Algebraic solution to the sailors, the coconuts, and the monkeys problem . . . . 133

Exercises of Chapter 3 139

References of Chapter 3 144
Books and/or Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
References on the WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4 Reading and writing (input/output) in Python 146
4.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2 Python print function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3 Python input function and try--except statement . . . . . . . . . . . . . . . . . . 151

4.3.1 Reading data entered via the keyboard . . . . . . . . . . . . . . . . . . . 154
4.4 Programing the guess two-digits game . . . . . . . . . . . . . . . . . . . . . . . 156
4.5 Programing the guess a number game . . . . . . . . . . . . . . . . . . . . . . . 158
4.6 Writing and reading text files in Python . . . . . . . . . . . . . . . . . . . . . . 159

4.6.1 Writing text files in Python . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.6.2 Reading text files in Python . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Exercises of Chapter 4 166

References of Chapter 4 168
Books and/or Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
References on the WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5 Integers and Rational numbers in Python 169
5.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.2 Computing with integers in Python . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.2.1 Operations with integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.2.2 The least common multiple (LCM) of natural numbers in Python . . . . 174
5.2.3 Solving equations nvolving integers via SymPy . . . . . . . . . . . . . . 176

5.3 Fractions and how to represent them in Python . . . . . . . . . . . . . . . . . . 178
5.3.1 Representing fractions using sympy functions S and Rational . . . . . . . 179
5.3.2 Representing fractions using the module fractions . . . . . . . . . . . . . 181

5.4 Computing with fractions in Python . . . . . . . . . . . . . . . . . . . . . . . . 182
5.4.1 Addition of fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.4.2 Subtraction of fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.4.3 Multiplication of fractions . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.4.4 Division of fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



viii CONTENTS

5.4.5 Exponential operations with fractions . . . . . . . . . . . . . . . . . . . . 192
5.4.6 Solving equations involving fractions via SymPy . . . . . . . . . . . . . 195

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Exercises of Chapter 5 201

References of Chapter 5 203
Books and/or Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
References on the WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6 Decimal numbers in Python 204
6.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.2 Computing with decimal numbers in Python . . . . . . . . . . . . . . . . . . . . 205

6.2.1 Operations with decimals . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.2.2 Relative error: a way to quantify round-off errors (optional) . . . . . . . 208
6.2.3 Cautionary tales about operations with decimals . . . . . . . . . . . . . 211

6.2.3.1 Some observations when computing with decimals . . . . . . . 221
6.2.4 Computing with decimals using extended precision . . . . . . . . . . . . 221

6.2.4.1 Using SymPy extended float precision . . . . . . . . . . . . . . 223
6.2.5 Special mathematical functions and numbers in Python . . . . . . . . . 227

6.2.5.1 Special mathematical functions and numbers via SymPy . . . . 227
6.2.6 Solving equations involving decimals via SymPy . . . . . . . . . . . . . 230

6.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Appendix of Chapter 6 236
A.1 A simple Python one variable, linear equation solver run on a browser via Flask 236

Exercises of Chapter 6 241

References of Chapter 6 242
Books and/or Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
References on the WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7 Graphing and data visualization in Python 244
7.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.2 Graphing two dimensional data with Matplotlib . . . . . . . . . . . . . . . . . . 244
7.3 Fitting a curve to a two dimensional data (optional) . . . . . . . . . . . . . . . 248
7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Exercises of Chapter 7 253

References of Chapter 7 254
Books and/or Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
References on the WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



ix CONTENTS

Index 256

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



1

Getting, installing, and testing the programming
python environment

“Learning is not attained by chance, it must be sought for with ardor and attended to with
diligence.”

Abigail Adams
1744 - 1818

1.1 Motivational remarks
In the context of this book, we’ll understand programming as the craft of writing instructions
that a computer will understand and execute literally (without complaint, unless something is
wrong in the given instructions). In its own, a computer is unable to do anything. We, the
programmer, are responsible for telling the computer what task to perform and how to do it.
Accordingly, when it is told to do so, the computer execute instructions written (following a
rigorous syntax) in a language that it is able to understand. If the given instructions do not
conform with the allowed syntax, only error messages are dumped on the computer screen.
If there are logical errors (like writing a multiplication sign instead of the adding one) no
complaint will be given by the computer. Thus, the programmer (or the programming team)
is responsible for the logic, efficiency, and rightness of the sequence of instructions a computer
should execute.

Why learn how to program at an early stage of our formal educational track.?
Following the aforementioned facts, in order to be able to write meaningful instructions that
computer will understand (and do what we want) it is necessary that we understand what it
is we would like the computer to do. Then we need to think about how to write such a task in
the limited set of valid keywords available in the computer language of our choice to interact
with the computer. It is a fact that performing such steps requires the activation and use of
high order thought processes to accomplish the fascinating task of making the computer to
do work for us. Reaching such level of precision requires discipline to devote many hours of
enjoyable hard work, having as intellectual reward the satisfaction to have made the computer
to do (perhaps efficiently) the task that we want, that perhaps no body else has done yet.

Accordingly, in answering the posed question partially, we can point out that many studies
(for details, in case you are curious, see references at the end of this chapter on page 20)
has shown that learning how to program helps students to (whatever it means) develop high

1



2 Chapter 1: Installing and testing Python

order thinking skills, which are necessary to approach (via well formed reasoning) quantitative
and non quantitative subjects with confidence, that in turns is a desired key outcome of the
many mathematical course work training programs, like for instance the Common Core State
Standards [http://www.corestandards.org/Math/] of mathematical practice in the
United States (US). In other words, knowing how to program gives you another dimension to
think about problem-solving, a critical skill to perform well in the Sciences and Engineerings
that is stressed in many courses (including the Prealgebra one). That is, via programming
you can easily explore (via the computer) solution to non-routine problems, performing little
mathematical experiments to foster your understanding.

To further your interest in learning how to program, perhaps, at this point, you would like
to read the headline story back of 2002 related to the computer scientists guys who used the
computer to find out via an efficient algorithm whether a given number is prime [http://
www.ams.org/notices/200305/fea-bornemann.pdf] [https://mathoverflow.
net/questions/12085/experimental-mathematics], a topic you’ll be studying in
your Prealgebra course work.

In addition to what we have just said, learning how to program fits beautifully within the frame-
work of many Computer Science (CS) programs for young students, like the recently created (in
the US) Computer Science for All (CSforAll) Consortium [http://www.csforall.org/]
which, recognizing the importance of being knowledgeable on the aspects of dealing with com-
puters internally, is dedicated “to enable students to achieve CS literacy as an integral part of
their educational experience both in and out of school.”[http://www.csforall.org/] More-
over, perhaps widening the question and answering the commonly asked one when am I ever
going to need this?, a recent study [https://doi.org/10.1063/PT.3.3763] shows that
programming is one preponderant skills used on daily, weekly, or monthly basis by physics grad-
uates working at private-sector jobs in engineering or Computer Science. Other endeavors giving
preponderance to learning how to program are the RasberryPi [http://bit.ly/1Jua4qn]
and Arduino [https://www.arduino.cc/] movements.

Thus, without doubt, knowing how to program will be a required (like reading and writing) skill
in the near future. The quick development of Artificial Intelligence nowadays is also a factor
demanding such skills (many more devices will require some sort of programming to operate at
its optimum powerfulness).

Now, because of the great variety of possibilities, finding a computer language suitable to learn
how to program at an early stage of our formal education is a difficult task. This is where
Python comes to mind.

Complementing what was said in the Preface, Python, as mentioned there, is a free and open
source (scripting) programming language having the functionality required by developers and
users to any modern programming language, some of which are possessing an efficient high
level data structure and allows object oriented programming. These requirements might
not mean much to anyone starting to learn how program, but it is good to know from the
start that we are making a good use of our time by learning to program in a long lasting
programming language, that since very recently has been a common programming language

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



3 Chapter 1: Installing and testing Python

at top US Universities (shown via research studies in 2014 and 2017. For details see the web
references section, on page 20).

As a very sophisticated programming language, Python also provides functionality to program
in parallel using both the standard multiprocessing capabilities provided by the Central Pro-
cessing Units (CPUs) of any modern computer and the power of the Graphical Processing Units
(GPUs) available via the many existing video cards. Hence the subtitle of this book: First steps
to perform large scale computational tasks in the Sciences and Engineerings. In addition, Py-
thon has (and continues) growing to provides support to handle problems in practically all areas
of Science and Engineering, ranging from Astronomy [http://www.astropython.org/] to
Molecular Biology [http://biopython.org/DIST/docs/tutorial/Tutorial.html]
(an abridged list of the covered subjects can be found at [https://pypi.python.org/
pypi/]).

Now, in the same way as it is impossible to learn swimming by just reading a book, neither one
learns how to program by only reading a textbook. It is thus necessary to practice writing and
executing computer programs. This helps on keeping a mental library of what works a what
does not, as well as where to look to correct compilation (in case of working with a compiled
language) and runtime crashes.

Accordingly, assuming that we learn by doing, a lemma that anyone reading this book should
adopt is found in a thought of the Nobel Prize Herbert Simon regarding that

Learning results from what the student does and think and only from what the student does
and think. The teacher can advance learning only by influencing what the student does to
learn.

Thus, taking for granted that you (the reader) are well interested to learn how to program or
using your programming skills in doing your Prealgebra tasks, we are confident that you are
willing to read this book carefully enough, executing the programming activities presented all
over the content of the text. You can steep up your learning curve by taking advantage of
the many resources available on the internet for sharing on the topic of Python programming,
among them the resources listed at the Python community page [https://www.python.
org/community/].

1.2 The terminal, system shell or console of commands
Before continuing, let’s us mention that in this book we are going to be executing commands
by typing them (instead of using the computer mouse). Accordingly, you need to be acquainted
with how to open a window (system shell) to type commands in your operating system. In
Linux such a window is called a terminal or console of commands . and to open one depends
on the flavor of Linux you are using (some standard Linux commands are presented in the

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



4 Chapter 1: Installing and testing Python

Appendix-A.1 of this chapter, on page 17). For instance, in Linux Ubuntu [http://www.
ubuntu.com/], the flavor of Linux we are using, a terminal is opened by hitting the key T
while keeping pressed down simultaneously the keys CTRL and ALT. From now on, we will
assume you know how to open a terminal in your system.

1.3 Installing Python
As pointed out previously, Python is our choice of the computational language to learn how to
program via the content of a standard Prealgebra course work.

As mentioned, Python is a free and open source distributed software. In case it is already
available in your computer, you can go straight to verify its functionality for this course by
executing the steps given in section 1.4 below.

Python can be obtained in source form via The Python Software Foundation [https://
www.python.org/]. Installing Python from sources is the hard way to go and it will take
sometime to do it correctly (you’ll need to install Python this way in case you are using an
operating system different from Windows, Mac, or Linux . As there are alternatives to have
Python installed without restrictive licenses for educational purposes, we are skipping this way
of installing Python directly from sources and let you on your own in case you choose to follow
it.

Before continuing with any of the alternatives to have Python installed in your system, you
need to find out whether your computer is 32 bits, 64 bits or both (in the last case assume 64
bits). One way to do that in Linux is by typing in a terminal the command (here the $ sign
is the terminal’s prompt in our computer, after which the command lscpu | grep CPU is
typed, hitting RETURN or ENTER after it):

$ lscpu | grep CPU
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 8
On-line CPU(s) list: 0-7
CPU family: 6
CPU MHz: 800.000
NUMA node0 CPU(s): 0-7
$

Chapter 1, System shell command 1

The output of the command (all the stuff after the line containing the $ sign) shows that the
computer we are using is capable of running both 32 and 64 bit applications. Thus, we are
using a 64 bit Python. If you are curios about this terminology, you could find more about

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



5 Chapter 1: Installing and testing Python

it on the internet. A couple of sites are listed in the web reference section of this chapter, on
page 20.

Continuing we our Python installation, one alternative to have it installed on our computer is to
choose the Python Anaconda distribution available (for Windows, Mac, and Linux ) at [http:
//continuum.io/downloads]. The installation instructions can be found at [http://
docs.continuum.io/anaconda/install.html].

In short, to install the Python Anaconda distribution, we need to go to the Anaconda download
page [http://continuum.io/downloads] and find the available version for our operating
system. In our case we downloaded Python via the “Linux installers” option, for a 64 bits
system of Python-3.x (x is a number fine tuning the current Python version). Two versions of
Python are in use at the moment of writing: Python-2.x and Python-3.x. We suggest the use of
Python-3.x, although the Python scripts in this book, however, will also work as given (without
any changes) in both versions of Python. In the following internet entry you can read about the
reasons for this coexistence [https://wiki.python.org/moin/Python2orPython3] of
two versions of Python.

Once we have downloaded the chosen Python Anaconda distribution, to install it on the com-
puter we type in a Linux terminal the command:

$ bash PythonAnacondaFilename

Chapter 1, System shell command 2

An screen shot of this process is as follows:

$ bash Anaconda-1.9.1-Linux-x86_64.sh

Welcome to Anaconda 1.9.1 (by Continuum Analytics, Inc.)

In order to continue the installation process, please review the
license

agreement.
Please, press ENTER to continue
>>> (preionar ENTER o RETURN)
===================================
Anaconda END USER LICENSE AGREEMENT
===================================
...

Chapter 1, System shell command 3

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



6 Chapter 1: Installing and testing Python

...

...

...
Do you approve the license terms? [yes|no]
[no] >>> yes (preionar ENTER o RETURN)

Anaconda will now be installed into this location:
/home/miusuario/anaconda

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify an different location below

[/home/miusuario/anaconda] >>> (preionar ENTER o RETURN)
PREFIX=/home/miusuario/anaconda
installing: python-2.7.6-1 ...
installing: conda-3.0.6-py27_0 ...
...
...
...
...
installing: anaconda-1.9.1-np18py27_0 ...
installing: _cache-0.0-x0 ...
Python 2.7.6 :: Continuum Analytics, Inc.
creating default environment...
installation finished.
Do you wish the installer to prepend the Anaconda install location
to PATH in your /home/miusuario/.bashrc ? [yes|no]
[no] >>> yes (preionar ENTER o RETURN)

Prepending PATH=/home/miusuario/anaconda/bin to PATH in
/home/miusuario/.bashrc

A backup will be made to: /home/miusuario/.bashrc-anaconda.bak

For this change to become active, you have to open a new terminal.

Thank you for installing Anaconda!
$

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



7 Chapter 1: Installing and testing Python

Notice that the installation process ends by asking if you want to have Python Anaconda
as your default Python. You’ll get it by answering “y” (for yes).

Another choice to have Python in our computer is to instal the Enthought Canopy distribution
available at [https://www.enthought.com/products/epd/free/]. We let you follow
the installation instructions on your own in case you choose the Canopy distribution. They are
essentially the same as the one we explained for the Python Anaconda distribution.

Both (Python Anaconda and Enthought Canopy) distributions brings to your computer more
power than require to learn how to program using Python via a Prealgebra course work. In
particular, these distributions comes with modules for scientific computation already installed
like NumPy [http://www.numpy.org/] and SciPy [http://www.scipy.org/] helpful
to perform (among others) numerical computations and computational statistics; Matplotlib
[http://matplotlib.org/] to satisfy graphing needs; SymPy [http://sympy.org/
en/index.html] to perform symbolic computations; and IPython [http://ipython.
org/] which is a nice console to execute Python instructions iteratively and some of its nice
features will be introduced as we use the IPython console along the development of this
book (other alternatives to IPython that we are not going to be using in this book, like
the native Python idle console, are also available). Another nice environment is provided
by the Jupyter Notebook [http://jupyter.org/] (formerly called the IPython Notebook
[http://ipython.org/notebook.html]), which provides a web browser like presentation
of the IPython console with some extra features.

To end this section, let’s point out that in case you are unable (or do not want) to install
Python on your computer, you still can use it over the internet. A good alternative is the
IPython console available at [https://www.python.org/shell/] and the SymPy console
available at [http://live.sympy.org/] (the former also has available SymPy). A major
limitation of these two options is that you might not be able to see graphs on your computer
screen generated from Python instructions in these consoles. Another attractive alternative
(allowing the shown of graphs but requiring a good internet connection) is the Sage Math
project [https://cloud.sagemath.com/].

1.4 Checking that we have what is needed for our journey
with Python and Prealgebra

Once Python is installed, one should make sure it contains the required setup for this book. To
do that we need to start a terminal (as explained in section 1.2).

In the opened terminal we will start or activate the IPython console, which is where we are
going to type Python commands. This is done by executing (remember: a) the $ sign is the
terminal prompt in our case b) hit the ENTER or RETURN key after typing the command
ipython --pylab. Notice also the two dashes(--) before the keyword pylab):

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



8 Chapter 1: Installing and testing Python

$ ipython --pylab

Chapter 1, System shell command 4

After executing this command, your terminal window should look similar to:

$ ipython --pylab
Python 3.6.2 |Anaconda, Inc.| (default, Sep 30 2017, 18:42:57)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.
Using matplotlib backend: Qt5Agg

In [1]:

Chapter 1, IPython session 1

The executed command (ipython --pylab) activates the Python computational environ-
ment in the IPython console. The passed option --pylab load the graphing capabilities of
Matplotlib so we can see graphs on our computer screen. If the IPython console does not
appear on your computer screen, you need to reinstall Python as described earlier.

Here we need to notice the prompt In [1]:, ready to receive the first Python instructions
that we are going to type and execute in this IPython console. We’ll be calling the numbered
In [n]: prompt an input cell In [n]:. Eventually, if required by the command or not
suppressed by the user, there will also be a corresponding Out[n]: prompt that we’ll be calling
output cell Out[n]:. Let’s advice that, in general, no space should be typed at the beginning
of any Python instruction written on any In [n]: prompt (IPython already includes an space
after it).

Before continuing, let’s mention that once we have finished doing computations interactively
in the IPython console, we can quit from it by typing at the input cell quit or exit and
hit RETURN or ENTER. An alternative way to quit the IPython console is by hitting
simultaneously the keys CTRL and D. The system will request confirmation for which you
should type y and then hit RETURN or ENTER.

Now, the first check of our computational Python environment setup comes by typing on the
IPython console the following lines of code (these are actually two Python instructions as
indicated by the semicolon separator) and hit ENTER or RETURN:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



9 Chapter 1: Installing and testing Python

In [1]: x = randn(10000) ; hist(x, bins=40, color='white',
edgecolor='black') ;

In [2]:
\end{lstlisting}
% hist(x, bins=40, color='w', edgecolor='black', linewidth=1.2) ;
% x = randn(10000) ; hist(x, bins=40, color='w') ;
%\$ savefig('foo.png', bbox_inches='tight')

Chapter 1, IPython session 2

Before describing these lines of Python code, let’s point out that the equal (=) sign in pro-
gramming does not has the same meaning it has in standard mathematical operations. In a
crude, not very precise form, the equal sign in programming indicates to store in the computer’s
memory location temporarily labeled by the name at the left side of the equal sign whatever
valid expression is written to the right of the equal sign. This will make more sense to you
when discussing variables in Python in the next chapter.

After executing the just presented sequence of Python instructions, in your computer screen
should appear the figure 1.1, shown on page 10). Since we are checking our Python setup, it is
not necessary to understand those Python instructions yet. Nevertheless, a brief description of
them does not hurt.

The first line of code (or Python instruction) typed on the input cell In [1]: (x = randn(10000)
defines a variable x and assign to it ten thousand random numbers drawn from a normal or
Gaussian distribution (if you are unfamiliar with such terms, do not worry because they will
make sense to you after covering statistics during the Prealgebra course work). Then, the fol-
lowing Python instruction (hist(x, bins=40, color=’w’)) makes a histogram plot (see
figure 1.1 on page 10) of the set of data stored in the “variable” x (again, if you are not familiar
with what this term, histogram, means, it will make sense to you after covering statistics in the
Prealgebra course work). If everything has gone right (meaning that you get displayed on your
computer screen the plot shown in figure 1.1, on page 10) congratulate yourself because you
have written and successfully executed your first Python lines of code (program) interactively.
This also means that Matplotlib is working as expected in your Python setup. If for some
reason you don’t get the plot of figure 1.1 on page 10, revise that you typed correctly the given
sequence of commands (copying and pasting might not work correctly).

As learning by doing is our lemma, here comes your first practice exercise. Make a color plot
of the histogram (this is exercise 1.1, on page 19). This is done by executing the Python
instruction hist(x, bins=40, color=’g’, edgecolor=’k’);, on the IPython input
cell In [2]: (if the IPython window is gone, just start a new one and redo what you did
before). Also try writing the lines of code one per line without the semicolon at the end of each
line. In addition, after executing the given lines of code, on an IPython input cell just type x
and hit ENTER or RETURN and see what happen.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



10 Chapter 1: Installing and testing Python

Figure 1.1: Checking out Matplotlib

Let’s now check that SymPy is working as expected. For that will be computing the solution
of the following set of equations, the rightness of which can easily be checked via manual
computation. The exercise is to find x and y in terms of the other symbols (a, b, c, d, e, and
f) considered as known.

ax+ by = e

cx+ dy = f
(1.1)

In case the previous IPython session is still active you can type in there the following sequence
of Python instructions (otherwise you could start a new IPython session, as explained earlier,
and type in there the Python instructions that follows):

In [8]: from sympy import *

In [9]: a, b, c, d, e, f, x, y = symbols('a b c d e f x y')

In [10]: eqs = [a*x + b*y - e, c*x + d*y -f]

In [11]: eqs
Out[11]: [a*x + b*y - e, c*x + d*y - f]

In [12]: sol = solve(eqs, x, y)

In [13]: sol
Out[13]: {x: (-b*f + d*e)/(a*d - b*c), y: (a*f - c*e)/(a*d - b*c)}

In [14]: sol[x]

Chapter 1, IPython session 3

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



11 Chapter 1: Installing and testing Python

Out[14]: (-b*f + d*e)/(a*d - b*c)

In [15]: sol[y]
Out[15]: (a*f - c*e)/(a*d - b*c)

In [16]: sol[x].subs({a:1, b:1, c:1, d:-1, e:2, f:0})
Out[16]: 1

In [17]: sol[y].subs({a:1, b:1, c:1, d:-1, e:2, f:0})
Out[17]: 1

In [18]: sol
Out[18]: {x: (-b*f + d*e)/(a*d - b*c), y: (a*f - c*e)/(a*d - b*c)}

In [19]:

A brief explanation of these Python instruction follows. If you are typing the code, remember
that after finishing typing each instruction on the IPython input cells In [n]:, one needs to
hit ENTER or RETURN to execute the respective entry. The instruction on the input line
In [8]: from sympy import * loads into memory of the current Python session the
functionality (methods and/or functions) of the module SymPy (a better choice for doing
this will be presented presented shortly and covered in deep next chapter). In the next line
In [9]:, the variables on the left side of the equal sign are defined as symbolic variables via
the SymPy function symbols. The right hand side of input line In [10]: set in a Python list
(defined by the pair of square brackets [· · · ]) the equations to be solved separated by a comma
and assigned to the variable eqs. Notice that only the left hand side of the equations 1.1 is
given, after moving everything to that side. Input line In [11]: confirms the equations were
stored correctly.

Continuing with the task of solving the two equations 1.1 for x and y, this is done on input
line In [12]: via the SymPy function solve, and the result is assigned to the variable sol
on the left hand side of the equal sign. The solution is then displayed on the output cell Out
[13]:, and for each unknown x and y, respectively, on the output cells Out [14]: and Out
[15]: (pay attention to the way of extracting them from the returned solution by SymPy .
The rightness of the obtained solution can be verified by manual computation. That is left as
an exercise to you (when covering equations in your Prealgebra course work).

Nevertheless, a simple test of the general result (that can be done via mental computations) is
provided on input cells In [16]: and In [17]:, where numerical values for the constants
a, b,· · · , and f are given to find the solution of the simple problem of finding two numbers such
that when adding them the number two is obtained, while when subtracting them the result is
zero.

One can check that the answer to the posed exercise is x = 1 and y = 1, as given, respectively,

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



12 Chapter 1: Installing and testing Python

on output cells Out[16]: and Out[17]:. This action of using easy to compute (special)
cases is a common nice way to test the correctness of general results that we should always
perform.

Finally, in output cell Out[18]: it is shown that the general result is still available (for extra
numerical or algebraic computations) in the variable sol. It remains unchanged as numerical
values has been assigned to the symbols a, b,· · · , and f to find numerical solutions.

If you are a bit confused with what we have done, don’t worry. Remember that we are just
becoming familiar and checking our installation. Many of the programming terms will be fully
explained in the chapters to come.

Now, even though SymPy has capabilities to perform numerical computations, it is not the
right tool for it. Python includes two powerful modules specially designed to perform numerical
computations efficiently. They are NumPy and SciPy (the later is dependent on the former).
We will cover some of its power later on in the book. For now, let’s just check their functionality
by solving the system of equations 1.1 resulting after setting a = 1, b = 1, c = 1, d = −1,
e = 2, and f = 0 to get the system (whose solution we already know from above):

x+ y = 2

x− y = 0
(1.2)

The solution of the equations 1.2 can be found by typing in an IPython console the following
lines of code (Python instructions):

In [15]: import numpy as np

In [16]: import scipy

In [17]: A = np.array([[1, 1],[1, -1]])

In [18]: A
Out[18]:
array([[ 1, 1],

[ 1, -1]])

In [19]: B = np.array([ 2, 0])

In [20]: B
Out[20]: array([2, 0])

In [21]: scipy.linalg.solve(A,B)
Out[21]: array([ 1., 1.])

Chapter 1, IPython session 4

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



13 Chapter 1: Installing and testing Python

In [22]: np.linalg.solve(A,B)
Out[22]: array([ 1., 1.])

In [23]:

On input lines In [15]: and In [16]: the functionality of the modules NumPy and SciPy
are loaded in the computer memory of the current Python session. These are the recommended
way to bring a module to the current computational Python environment. We’ll explain it a
bit further later on, but a major reason is given on input lines In [21]: and In [22]:.
Both NumPy and SciPy contains functions to do the same task named the same way in both
modules (in this case the function is called solve). By prefixing the function with the module’s
name we ensure we are using the function of that module. Later on will explain the customary
way of importing the module NumPy , as given on input line In [15]: (by the way, the order
of importing the modules is irrelevant. The only requirement is importing them before any
function in there is used). The output cells Out [21]: and Out [22]: indicates we get the
expected answer from both ways of finding the solution of the posed system of two equations 1.2,
as obtained previously using the SymPy operations. This gives us some confidence that NumPy
and SciPy were installed correctly.

As mentioned earlier, once we have finished doing computations interactively in the IPython
console, we can quit from it by typing at the input cell quit or exit and hit RETURN or
ENTER. An alternative way to quit the IPython console is by hitting simultaneously the keys
CTRL and D. The system will request confirmation for which you should type y and then hit
RETURN or ENTER.

1.5 Running Python packages test suite (optional)
Although the examples we just executed makes us confident that the Python modules of inter-
est for this book (namely SymPy , Matplotlib, NumPy , SciPy and the IPython console) were
installed correctly in our system, these modules came packaged each one with a test suit we
should execute to have and idea what sort of issues comes with each one (keep in mind that
any software system is not perfect and always has issues. Unfortunately, sometimes commer-
cial software vendors does not fix such issues as fast as costumers might expect it to happen
[http://www.ams.org/notices/201410/rnoti-p1249.pdf]).

When using Python for extensive and intensive computational work, knowing any issue reported
by the modules (providing) suite tests could save us hours of pain and frustration trying to find
out why something (perhaps already reported by the tests suite as such) does not behave as
expected.

Here is a way to execute the tests for the basic computational modules we will using in this
book. Beware, however, that executing them could take a few long minutes to
finish, depending on your computer speed. Later on you’ll learn how to write Python

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



14 Chapter 1: Installing and testing Python

scripts so Python instructions (programs) can be executed non-interactively. The tests can
be executed in any order.

In case errors and/or failures are reported at the summary given at the end, after finishing the
test execution, one needs to check them and take note we are not using the respective functions
in our Python programs.

1.5.1 Executing the NumPy test suite

Open a Linux terminal and initiates an IPython session. The NumPy test suite can be run
by executing the following Python instructions (avoid executing this test on the same
IPython session where the SciPy test has been executed):

$ ipython --pylab
...
...
...
In [1]: import numpy

In [2]: numpy.test("full", verbose=10)
...
...
...
Running unit tests for numpy
NumPy version 1.13.1
NumPy relaxed strides checking option: True
NumPy is installed in

/home/myProg/Anaconda35001/lib/python3.6/site-packages/numpy
Python version 3.6.2 |Anaconda, Inc.| (default, Sep 30 2017,

18:42:57) [GCC 7.2.
0]
...
...
...
----------------------------------------------------------------------
Ran 6832 tests in 215.953s

OK (KNOWNFAIL=7, SKIP=14)

In [3]:

Chapter 1, IPython session 5

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



15 Chapter 1: Installing and testing Python

1.5.2 Executing the SciPy test suite

Open a Linux terminal and initiates an IPython session. The SciPy test suite can be run
by executing the following Python instructions (avoid executing this test on the same
IPython session where the NumPy test has been executed):

$ ipython --pylab
...
...
...
In [1]: import scipy

In [2]: scipy.test("full", verbose=10)
...
...
...
Running unit tests for scipy
NumPy version 1.13.1
NumPy relaxed strides checking option: True
NumPy is installed in

/home/myProg/Anaconda35001/lib/python3.6/site-packages/numpy
SciPy version 0.19.1
SciPy is installed in

/home/myProg/Anaconda35001/lib/python3.6/site-packages/scipy
Python version 3.6.2 |Anaconda, Inc.| (default, Sep 30 2017,

18:42:57) [GCC 7.2. 0]
...
...
...
----------------------------------------------------------------------
Ran 25594 tests in 612.945s

OK (KNOWNFAIL=153, SKIP=1819)

In [3]:

Chapter 1, IPython session 6

1.5.3 Executing the SymPy test suite

Open a Linux terminal and initiates an IPython session. The SymPy test suite can be run by
executing the Python instructions:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



16 Chapter 1: Installing and testing Python

$ ipython --pylab
...
...
...
In [1]: import sympy

In [2]: sympy.test()
...
...
...
----------------------------------------------------------------------
tests finished: 6984 passed, 1 failed, 193 skipped, 348 expected to

fail,
11 expected to fail but passed, in 1677.08 seconds
DO *NOT* COMMIT!

In [3]:

Chapter 1, IPython session 7

1.6 Chapter Summary
In this chapter you had a lot of fun getting the Python environment ready to start the business
of crunching numbers on your computer. A major step was to install the Anaconda and/or
Canopy Python distribution. Then we executed some basic tests checking the functionality of
the installation.

In the next chapter we will start using this Python environment to help you enhance your
knowledge of computing with whole numbers. For that, you will start writing small Python
programs, right away after working out with us some preliminaries steps on Python program-
ming presented in the chapter, including defining Python variables and Python list objects, and
going to basic implementations of the for and while Python loops which are the standard tools
to perform repetitive task in Python.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Appendix of Chapter 1

A.1 Some Linux commands
As you are already familiar with it, the Linux terminal is a window (console) that allows the
typing of commands to interact with the computer. In the Ubuntu flavor of Linux , a terminal
is opened by hitting simultaneously the key sequence CTRL-ALT-T (other Linux systems has
different sequences of keys). A brief list of Linux commands that are available in any Linux
flavor is listed below (they also work in any Unix terminal like the Mac terminal) :

cat: used to dump the contents of a file (by default) to the terminal. It is invoked like cat
file(s)name.

cd: used to change between directories. It is invoked like cd directory-name.

cp: used to make a copy of a file to a file with a new name or with the same name if the copy
goes to a different directory where the copied file resides. It is invoked like:

cp filename new-filename
cp file(s)name directory-filename-path
cp filename directory-filename-path/new-filename.

cp -r: used to make a copy of a directory. It is invoked like
cp -r directory-name new-directory-name.

chmod -R: used to change permissions to files or directories. Its basic usage goes like chmod
-R u+r file-or-directory-name.

chown: used to change the owner of a file or directory. Its basic usage goes like chown
new-user file-or-directory-name.

exit: used to close a terminal . It is invoked like exit.

file: used to know the type of a file. It is invoked like file filename.

gzip: used to pack files in the zip format. Its basic usage goes like zip file.zip file(s)name.

ls: used to list the files in a directory. Its basic usage goes like ls.

locate: used to find files in the system. It is invoked like locate filename.

man: used to show on screen a basic help of a command. It is invoked like man command-name.

17



18 Appendix of Chapter 1

mkdir: used to create a directory. It is invoked like mkdir directory-name.

more: used to show the contents of a file to the terminal screen by screen (meaning that that
a large file it shows in the terminal in small pieces of the screen size. The space bar needs to
be hitting to go between screens). It is invoked like more filename.

mv: used to change a file or directory name to a new one or to move a file or directory to an
existing directory. Its basic usage goes like
mv filename new-filename-or-existing-directory-name.

pwd: used to show the current directory path. It is invoked like pwd.

rm: used to delete files or non empty directories. Its basic usage goes like
rm -rf file-or-directory-name.

rmdir: used to delete directories. It is invoked like rmdir directory-name.

unzip: used to unpack zip files. Its basic usage goes like unzip full-zip-filename.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Exercises of Chapter 1
Exercise 1.1 Following the instructions given on page 9, make a color graph of the figure 1.1,
on page 10.

19



References of Chapter 1

Books and/or Articles
• Marecek, L. and Smith, M. A. (2017). Prealgebra, Rice University, OpenStax
https://openstax.org.
Book available for free at: http://cnx.org/content/col11756/1.9

• Tollervey, N. H. (2015). Python in Education Teach, Learn, Program, O’Reilly.
http://www.oreilly.com/programming/free/python-in-education.csp

• Developping high-order thinking skills:
Reif, F. and Scott, L. A. (1999) Teaching scientific thinking skills: Students and com-
puters coaching each other. American journal of physics, 67 (9), 819--831.
Reif, F. (2008) Applying Cognitive Science to Education. Thinking and Learning in
Scientific and Other Complex Domains. MIT Press.
Polya, G. (1988) How to solve it. A new aspect of mathematical method. Expanded
edition, Princeton University Press.
Schoenfeld, A. H. (1994) Mathematical thinking and problem solving. Taylor & Fran-
cis. (See essay by Andrea A. diSessa on page 248.)
Rojas, S (2012) Enhancing the process of teaching and learning physics via dynamic
problem solving strategies : a proposal. Revista Mexicana de Física E, 58 (1), 7--17.
(Freely available at http://rmf.fciencias.unam.mx/pdf/rmf-e/56/1/56_1_
022.pdf ).
Rojas, S (2010) On the teaching and learning of physics problem solving. Revista Mex-
icana de Física, 56 (1), 22--28. (Freely available at http://rmf.fciencias.unam.
mx/pdf/rmf-e/56/1/56_1_022.pdf ).
Rojas, S (2008) On the need to enhance physical insight via mathematical reason-
ing. Revista Mexicana de Física E, 54 (1), 75--80. (Freely available at http://rmf.
fciencias.unam.mx/pdf/rmf-e/54/1/54_1_075.pdf ).

References on the WEB
• Pedagogical Aspects of Computational Thinking:
http://nap.edu/12840

20



21 References of Chapter 1

http://www.nap.edu/catalog.php?record_id=13170
http://bit.ly/1T7O2Tg
http://bit.ly/1T9iGZt

• Top programming languages research studies:
https://spectrum.ieee.org/computing/software/the-2017-top-programming-
languages
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-
most-popular-introductory-teaching-language-at-top-u-s-universities

• Operating systems: 32-bit-vs-64-bit:
https://www.digitaltrends.com/computing/32-bit-vs-64-bit-operating-
systems/
https://www.pcmag.com/article/350934/32-bit-vs-64-bit-oses-whats-
the-difference

• Automate the Boring Stuff with Python:
https://automatetheboringstuff.com

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



2

Whole numbers in Python
“Learning results from what the student does and think and only from what the student
does and think. The teacher can advance learning only by influencing what the student
does to learn.”

Herbert Simon
Nobel Laureate in Economic Sciences (1978)

2.1 Introductory remarks
The study of whole numbers (or non-negative integers, including zero) offers a natural envi-
ronment to start the use of Python, first using it as an standard calculator to perform basic
numerical operations with whole numbers (this is done in section 2.3, starting on page 24) and
then, at a more sophisticated level, while finding the answer to a problem involving a big whole
number obtained via an story related to the chessboard (see section 2.6, starting on page 31),
we will learn basic Python programming notions which will allow you to start writing small
programs in Python to perform repetitive tasks.

This will happen after introducing the basic and important programming notions of loop ex-
ecution (see section 2.7, starting on page 34). After that, we will be presenting some aspects
of the Python syntax that we need to know from the very start of using the language to avoid
unnecessary, annoying frustrations.

Accordingly, after finishing this chapter, you’ll be equipped with some components of the min-
imal basic set of Python tools to fully explore in your computer (via the exploration of routine
and non-routine problems) many of the subjects (not only whole numbers) that you will be
studying in your prealgebra course work.

Of course, additional important Python programming ideas will be presented in the following
chapters of this book, in the context of the respective chosen prealgebra topic (as in this chapter
the topic of whole numbers was chosen).

Let’s recall that Python is a (scripting) open-source programming language having the func-
tionality required to any modern programming language: it has an efficient high level data
structure and allows object oriented programming. This remarks might not mean much
to anyone starting to program, but it is good to know from the start that we are making a
good use of our time by learning to program in a long lasting programming language, that
since very recently has been adopted as a common programming language at top US Univer-

22



23 Chapter 2: Whole numbers in Python

sities [https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-
most-popular-introductory-teaching-language-at-top-u-s-universities].

In addition to the simplicity and elegance of its syntax, Python provides in one environment the
ability to perform numerical and symbolic (algebraic) computation as well as data visualization
or graphing capabilities. Moreover, Python codes are portable to practically any existing oper-
ating system (Windows, Mac OS X, Linux , Unix, etc.). This makes Python a very cost-efficient
option to develop computational literacy in school, colleges and universities.

Before starting the prealgebra topic of this chapter, we want to mention some extra words on
the IPython console that we are going to be using to execute Python instructions (code).

2.2 Starting the IPython console
As we have already mentioned, in this book we will use the IPython console in order to execute
Python instructions interactively (that is the meaning of the I in IPython). A more sophisti-
cated alternative is the Jupyter Notebook, but we are not using it in this book. Also, as our
command of Python develops, we will learn how to write Python instructions (code) in a file
(called Python script) and execute them directly from the terminal, non-interactively.

If installed correctly, the IPython console can be started by opening a terminal or system shell
(which in Linux Ubuntu is done by hitting simultaneously the keys CTRL-ALT-T) and then
typing on it the instruction (or command):

$ ipython --pylab

Chapter 2, System shell command 1

after which we need to press the ENTER or RETURN key. This sequence of actions will
present in the same terminal or system shell an output similar to:

$ ipython --pylab
Python 3.6.2 |Anaconda, Inc.| (default, Sep 30 2017, 18:42:57)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.
Using matplotlib backend: Qt5Agg

Chapter 2, IPython session 1

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



24 Chapter 2: Whole numbers in Python

In [1]:

Notice the In [1]: prompt. This is where we can start interacting with Python by typing
lines of code or instructions, as we will be doing shortly. Keep in mind that every typed
instruction is executed after you hit RETURN or ENTER.

Before continuing, let’s mention that the instruction --pylab is optional, meaning that it is
not required to include it when initiating an IPython console. This option is useful to display
graphs on a separated window. Some other features are initialized, but they are not of interest
to us in a basic usage of the IPython console.

We will be covering some features of the IPython console as they are needed. In case you would
like to jump ahead, you could read the firsts chapters of the IPython book by Rossant, listed in
the reference section for this chapter, starting on page 64. For now let’s mention in an IPython
console one could use the computer’s keyboard up and down arrow keys to go through the
input history of instructions already entered so you could revise and re-enter them. If you start
typing before pressing the arrow keys, only the commands that match what you have typed so
far will be shown.

To exit or leave the IPython console just type exit or quit and hit RETURN or ENTER.
Alternatively, you could hit simultaneously CTRL-D and then typing y (for yes) and hit
RETURN or ENTER.

2.3 Computing with Whole Numbers in Python
As learned in your class about whole numbers, these numbers are written down using the ten
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Such set of digits are part of the alpha-numeric characters
labeling the keys in your computer’s keyboard. Also you learned that large whole numbers are
represented in standard form using combination of these ten numerals grouped in sets of three
digits (called periods) separated by comma to indicate the named place value of each numeral,
as for example 1, 234, 567, 890 which is read one billion, two hundred thirty-four million, five
hundred sixty-seven thousand, eight hundred ninety.

As you might already know, in the computer numbers are represented without the comma
representing the place value of the digits. The only character allowed when writing numbers
in the computer is the period (.) representing decimals and a (preceding) dash (-) representing
negative numbers (both topics are covered when studying integers and real numbers, later on
in your prealgebra course work). Whole numbers does not have such a period as they do not
contain any decimal, neither they are written preceded by the dash as they can not be negative.
Thus, 1234567890 is the way to write the previous example of a whole number in the computer.

At this point one should also mention that the equal sign (=) in programming does not have
the same meaning as you learned in your prealgebra course work. We will present the meaning
of the equal sign in Python programming shortly, when studying variables in Python. An

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



25 Chapter 2: Whole numbers in Python

equality, represented by the equal (=) sign in your prealgebra course work, is obtained in Py-
thon programming by using a double equal sign (==). This will be discussed when studying
boolean operations in Python and equations via the SymPy module.

2.3.1 Basic Whole Numbers operations in Python

Standard operations of Addition, Subtraction, Multiplication, Exponentiation, and Division can
be readily executed in Python as we can do them in a calculator, with the added advantage that
in Python, when using whole numbers, they can be performed with unlimited digits (precision).

Addition: the symbol +, as in your prealgebra course work and in your calculator, is used
to perform the addition operations in Python. Type the following example to add 3 and
5 in the just opened IPython session (don’t forget to hit return after finishing your typ-
ing):

In [1]: 3+5
Out[1]: 8

Chapter 2, IPython session 2

This operation can be done the other way around (5 + 3). We let you do it as a right away
exercise and check the result.

Subtraction: the symbol −, as in your prealgebra course work and in your calculator, is used
to perform the subtraction operations in Python. Type the following example to subtract 2
from 6 in the current IPython session:

In [2]: 6-2
Out[2]: 4

Chapter 2, IPython session 3

This operation can be done the other way around (2− 6). We let you do it as an straightaway
exercise and check the result.

Multiplication: the symbol ∗, as in your calculator, is used to perform the multiplication
operations in Python. Type the following example to find the product of 2 and 7 in the current
IPython session:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



26 Chapter 2: Whole numbers in Python

In [3]: 2*7
Out[3]: 14

Chapter 2, IPython session 4

This operation can be done the other way around (7 ∗ 2). We let you do it at this instant as a
quick exercise and check the result.

Exponentiation: the symbol ∗∗ is used to perform exponentiation (repeated multiplication)
operations in Python. Type the following example to find two (2) to the third (3rd) power in the
current IPython session (we need to be careful in extreme when writing exponent operations.
The mistake of writing ∗ (multiplication) instead of ∗∗ (exponent) could take some time to find
out in large expressions):

In [4]: 2**3
Out[4]: 8

Chapter 2, IPython session 5

In general, x to the power of y (xy) is written in Python as x ∗ ∗y.
Division: Python version 3 (the one we are using in writing this book) contains two symbolic
operators / and // to perform the division operation. Either of the symbols separates the
numbers in the same way (as you learned in your prealgebra course work) does the symbol ÷
(the dividend goes to the left of the symbol while the divisor goes to the right of the symbol).
Type the following example to find the quotient of 6 divided by 2 in the current IPython
session:

In [4]: 6/2
Out[4]: 3.0

In [5]: 25/7
Out[5]: 3.5714285714285716

In [6]: 6//2
Out[6]: 3

In [7]: 25//7

Chapter 2, IPython session 6

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



27 Chapter 2: Whole numbers in Python

Out[7]: 3

In the case of exact division, shown in the output cell Out[4]: when using the symbol / to
execute the division, Python behaves the same way as does your calculator by adding to the
quotient (or result of the operation) the extra character .0 (in some other cases it can adds more
extra digits as a result of numerical round off errors). In this case of exact division, as shown
in the output cell Out[6]:, the result does not contain the extra character .0, as correspond
to a whole number. Nevertheless, as you learn in your prealgebra course work real numbers (of
which the whole numbers are a subset), we will be using the symbol / as the standard division
symbol. The symbol // is used to obtain the quotient of a division, without information of
the remainder which can be obtained by other means.

As a right away exercise, try the division examples just given the other way around, interchang-
ing dividend and divisor. In case you are using Python version 2 the result will be surprising.
To get the same (mathematically correctly) result as given by Python version 3, you need to
replace either 6 by 6.0 or 2 by 2.0 or do both. Another exercise for you to do at the moment
is to execute any division by zero (like 6/0). Take note of the output given by Python (we will
talk about it at the end of this chapter).

In summary, we have introduced the symbols +, −, ∗, ∗∗, and / as operators to perform in Py-
thon the basic operations of addition, subtraction, multiplication, exponentiation, and division
respectively with any set of Python objects (not only whole numbers) on which such operations
have meaning. A few extra words on the use of the operator // for division will be given in the
next section.

2.4 Variables in Python
The issue with the symbols / and // as way to execute division operations in Python, allow us
to introduce the notion of variables in Python.

Let’s first recall that when a division is not exact (the remainder is not zero) we can find
the quotient of the division of the two whole numbers by using // as the division symbol
instead of /. The following example of finding the quotient of 25 and 7 illustrates this opera-
tion:

In [1]: 25//7
Out[1]: 3

Chapter 2, IPython session 7

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



28 Chapter 2: Whole numbers in Python

Now to find the remainder of any division we can use the % operator, as follows:

In [2]: 25%7
Out[2]: 4

Chapter 2, IPython session 8

This result can be checked by using the fact that for any division, it must happen that the
dividend (in this case 25) must be equal to the remainder (in this case 4) plus the product
of the quotient (in this case 3) and the divisor (in this case 7). That is, dividend =
remainder + quotient ∗ divisor (in numbers 25 = 4 + 3 ∗ 7). We can set these operations in
Python as follows:

In [3]: dividend = 25

In [4]: dividend
Out[4]: 25

In [5]: divisor = 7

In [6]: divisor
Out[6]: 7

In [7]: quotient = dividend//divisor

In [8]: quotient
Out[8]: 3

In [9]: remainder = dividend % divisor

In [10]: remainder
Out[10]: 4

In [11]: result = remainder + quotient * divisor

In [12]: result
Out[12]: 25

In [13]: result - dividend

Chapter 2, IPython session 9

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



29 Chapter 2: Whole numbers in Python

Out[13]: 0

In [14]:

Let’s explore in words what we have done. On input cell In [3]: the variable dividend is
defined and set to whole the value 25. The equal (=) sign in many programming languages
means to assign to the variable name to the left of the sign (in this case dividend) whatever
expression is given to the right of it (in this case the value 25). To check what is contained in a
variable, we type the variable’s name on an IPython input cell and hit ENTER or RETURN
(this is done on input cell In [4]: and the result is shown on the corresponding output cell
Out[4]:).

In standard Python, variables must have been defined (assigned a valid value, not necessarily
a number) before they can be used. This is illustrated on the input cells In [7]:, In [9]:,
and In [11]: on which the name of variables appear on the right hand side of the equal sign.
Notice that on the right hand side of the equal sign could appear any valid set of operations or
expressions that Python first evaluates and assign the result to the variable in the left hand side
of the equal sign. The output cells Out[12]: and Out[13]: confirms that the dividend is
rightly defined by the expression assigned to the variable result on the input cell In [11]:.

The name of a variable in Python must start with any (upper or lower case) alphabetical
character or the underscore symbol (_) and could contain any combination of alpha-numeric
characters and the underscore (_) symbol (though valid, it is customary not to start our variable
names with the underscore symbol). Thus, a01_23, A01_23, _A01_23 (not recommended),
Iam, and myname are all valid variables names. The name of variables should be chosen so
we can have a sense of what they represent. A very long variable name is cumbersome to use,
while names with non sense are difficult to remember what they represent.

The use of properly chosen variables names allow us to focus attention on organize our
thoughts on solve what we are trying to accomplish instead of wasting time understanding
how we are doing it because of a wrong choice of variable names.

More importantly, the use of variables is what allows the craft of programming.

2.4.1 Reserved words in Python

Python, and any other computer language, has a set of reserved words that can not be used as
name of variables. A partial list of such words is shown in Table 2.1:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



30 Chapter 2: Whole numbers in Python

and as assert break class continue def del elif
else except exec finally for from global if import
in is lambda not or pass print raise return
try while with yield

Table 2.1: A partial listing of reserved words in Python

A completed list of reserved words in Python can be obtained by executing in the IPython
console the following sequence of Python instructions:

In [1]: import keyword
In [2]: keyword.kwlist

Chapter 2, IPython session 10

Try it in your system and see what you get. Also try assigning a value to any of such
keywords (i. e. try doing, else = 9).

2.5 Grouping basic Whole Number operations in Python
Now that we have introduced basic arithmetic operations with whole numbers in Python, we
can use round parenthesis (· · · ) to group complex computational operations in order to make
clear or explicit the order or precedence we want them to be performed. Let’s make emphasize
that what follows is also valid not only to whole numbers but also to the wider mathematics
set of numbers defined in Python.

Following with the IPython session (or in a new one), let’s try the following computation:

In [7]: ((2 + 7*(234-15)+673)*775)//(5+10+(4+1)*5)
Out[7]: 42780

Chapter 2, IPython session 11

The Python computational engine perform first divisions, followed by multiplication and then by
sum/subtraction operations. By using parenthesis we tell Python to perform first arithmetic op-
erations enclosed in parenthesis. This is a good practice that helps to avoid miss-arrangements

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



31 Chapter 2: Whole numbers in Python

of terms. We tell explicitly to Python the order in which we want executed the arithmetic
operations in an expression.

We can also use extra white spaces in between operations to clarify the operations:

In [8]: ( (2 + 7*(234 - 15) + 673)*775 )//( 5 + 10 + (4+1)*5 )
Out[8]: 42780

Chapter 2, IPython session 12

In case the computational expression we are writing is too large, we can span it over the next
line by using the back slash symbol (\) to tell Python that the expression continues in the next
line. IPython shows it by a symbol like ( ...:). Some examples are as follows:

In [9]: ( (2 + 7*(234 - 15) + 673)*775 )//( 5 \
...: + 10 + (4+1)*5 )

Out[9]: 42780

In [10]: ( (2 + 7*(234 - 15) + 673)*775 )//( 5 \
...: + 10 + (4+1)*5 )

Out[10]: 42780

In [11]: ( (2 + 7*(234 - 15) + 673)*775 )// \
...: ( 5 + 10 + (4+1)*5 )

Out[11]: 42780

Chapter 2, IPython session 13

2.6 The wheat problem: a computational example
involving a big Whole Number

At this point it is time to illustrate the computational capabilities of Python. We’ll do that
computing the answer to a problem involving the chessboard, which is given by means of a
illuminating story about numbers. To read the full story refers to chapter 16 (The game plan
of the book The man who counted, listed on the reference section for this chapter on page 64.

The story goes as follows. A king wanted to reward a man, Lahur Sessa, who introduced him
to the game of chess. Lahur Sessa refused to receive any reward, but after the king’s insistence
he made the following request to the king:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



32 Chapter 2: Whole numbers in Python

“... I do not wish either gold or lands or palaces... I want my reward in grains of
wheat. You give me one grain of wheat for the first square on the board, two for
the second, four for the third, eight for the fourth, and so on, doubling the amount
with each square up to the sixty-fourth and last square on the board. I beg you, O
King, in accordance with your magnanimous offer, to pay me in grains of wheat in
the manner I have indicated.”

After a while, the king’s wisest mathematicians told him:

“Magnanimous King! We have calculated the number of grains of wheat, and we
have reached a sum that is beyond human imagination. With the greatest care, we
have calculated the number of ceiras required to hold the appropriate quantity of
wheat, and we have arrived at the following conclusion: the wheat that you will
have to give to Lahur Sessa is the equivalent of a mountain with a diameter at its
base the size of the city of Taligana and a height ten times greater than that of
the Himalayas. If all the fields of India were sown with wheat, in two thousand
centuries you would not harvest what you have promised young Sessa. ”

The number contains 20 digits and it is 18, 446, 744, 073, 709, 551, 615 (one easy way to obtain
such a huge number is by subtracting one from the power 64 of two or (264 − 1). Perhaps you
do not understand it yet, but a proof of why is so is given on the Appendix of this chapter,
starting on page 59.

Let’s first compute it in Python following the straightforward instructions given by Sessa to the
king (for this you need to know that the chessboard is divided in 64 little squares):

1. For the first (1st) square, Sessa should receive one grain of wheat: (1 = 20 = 21−1).
2. For the second (2nd) square, Sessa should receive twice grains of: wheat as received in

the previous (last) square: (2× 1 = 21 × 20 = 21+0 = 21 = 22−1)
3. For the third (3rd) square, Sessa should receive twice grains of wheat as received in the

previous (last) square: (2× 21 = 21 × 21 = 21+1 = 22 = 23−1)
4. For the fourth (4th) square, Sessa should receive twice grains of wheat as received in the

previous (last) square: (2× 22 = 21 × 22 = 21+2 = 23 = 24−1)
5. For the fifth (5th) square, Sessa should receive twice grains of wheat as received in the

previous (last) square: (2× 23 = 21 × 23 = 21+3 = 24 = 25−1)
6. · · ·
7. Hopefully you have captured the pattern of 2Number of the square−1

8. · · ·
9. For the sixty-fourth (64th) square, Sessa should receive twice grains of wheat as received

in the previous (last) square: (2× 262 = 21 × 262 = 21+62 = 263 = 264−1)

To find the total grains of wheat that Sessa should have received we need to add the amount
received for each square. This done in Python as follows:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



33 Chapter 2: Whole numbers in Python

In [14]: 2**0+2**1+2**2+2**3+2**4+2**5+2**6+2**7+2**8+2**9+2**10 + \
....: 2**11+2**12+2**13+2**14+2**15+2**16+2**17+2**18+2**19+2**20

+ \
....: 2**21+2**22+2**23+2**24+2**25+2**26+2**27+2**28+2**29+2**30

+ \
....: 2**31+2**32+2**33+2**34+2**35+2**36+2**37+2**38+2**39+2**40

+ \
....: 2**41+2**42+2**43+2**44+2**45+2**46+2**47+2**48+2**49+2**50

+ \
....: 2**51+2**52+2**53+2**54+2**55+2**56+2**57+2**58+2**59+2**60

+ \
....: 2**61+2**62+2**63

Out[14]: 18446744073709551615

In [15]: 2**64-1
Out[15]: 18446744073709551615

In [16]: Out[14]-Out[15]
Out[16]: 0

Chapter 2, IPython session 14

To be sure that we have added correctly the terms for each square (typing all of them is prone to
error), the result is redone by computing (264−1). This is shown in the output cell Out[15]:.
Here we introduce another nice feature of the IPython console. The cell names are variable
names. Thus, to verify that the output of cells Out[14]: and Out[15]: are really the same
(instead of a visual inspection comparing the digits one by one) we can differentiated them, as
has been done in the input cell In [16]:. As expected, the result is zero as shown in the
corresponding output cell Out[16]:.

As already mentioned, a proof that the addition 20 +21 +22 + · · ·+2n = 2n+1−1, for any whole
number (integer) n ≥ 0 is given in the Appendix of this chapter, starting on page 59. You
can also recheck this result consulting the Wikipedia entry for this problem listed on the web
references section for this chapter, on page 64. A good solving problem strategy is to always
find alternative ways to verify the rightness of any obtained result. In the next section we will
show alternative, more efficient ways to perform the computation of this exercise.

Let’s end this section by trying to get an idea of how big is the number 18, 446, 744, 073, 709, 551, 615
obtained as the answer of this exercise. Such a number can be compared with the number
1020 = 100, 000, 000, 000, 000, 000, 000 (a one followed by twenty zeros), which is about five
times the former (as you can verify by finding the quotient of the division of the later number
by the former one).

If we considers that the heart beats of a healthy adult is roughly 100, 000 per day, the number

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



34 Chapter 2: Whole numbers in Python

1020 is obtained by computing the daily heart beats of one thousand trillion (1, 000, 000, 000, 000, 000)
people. Do we have that number of people in the world today? Certainly the number
18, 446, 744, 073, 709, 551, 615 is really a big one. In Python computing with big whole numbers
(or integers in general) is done via a special method called extended integer precision. Check
about it on the Internet.

We let you as an exercise to execute the above sum by writing 2.02 or 2.2 in one of the terms.
Is there any difference with the already known answer?

2.7 Repetitive computations in Python
An straight-forward computation in finding the answer to our exercise of the wheat problem
involves the typing on many terms that follow a pattern. The involved amount of typing is
prone to error, leading to obtaining a wrong answer. Fortunately, after finding our answer we
showed ways to check the obtained answer was the right one. The fact that there is a pattern in
the typed terms allows the natural introduction of repetitive computation in Python. Previous
to that we will need to introduce the notion of Python list and Python relational operators.
Then will be ready to present two ways of looping in Python: the for and the while loop.

2.7.1 Python List

An important basic Python type object is named list , which is an object that can contain zero
or more objects in an ordered way separated by comma and enclosed by square brackets:

[obj0, obj1, · · · , objn]

Also, like any other Python object, a list can be assigned to a variable, and we will be doing
so:

milista = [obj0, obj1, · · · , objn]

Here, the list object to the right of the equal sign was assigned to the variable milista. The
list elements are numbered left to right starting from zero, and the way to access any of them
is via a pattern containing the name of the variable referencing the list followed by a set of
squared brackets enclosing the number of the element we ant to list (following our example, the
element n is listed like milista[n]). Another way to referencing the elements of a list is by
using negative integers from −n to −1. Extra details operating with list can be found in the
documentation [https://docs.python.org/3/tutorial/datastructures.html].

Since the only Python objects we know so far are numbers (or variables referencing assigned
numbers), so in our first encounter with list objects they will contain whole numbers (but the
elements of a Python list can be objects of any type). Take a look at the following IPython
session illustrating the notion of list and how to work with them (in following this example you

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



35 Chapter 2: Whole numbers in Python

don’t need to type anything after and including the character numeral or hash-tag (#). In Py-
thon, that character is used to write comments which are ignored by the Python computational
engine, though it does not hurt if you type everything. Comments are used to document codes.
Other ways to write comments will be presented along the development of this book):

In [1]: # anything written after the numeral (hash-tag) character is a comment

In [2]: [3,4,6,8,1] # Here a list if defined
Out[2]: [3, 4, 6, 8, 1]

In [3]: milist = [3,4,6,8,1] # It is better assign the list to a variable

In [4]: type(milist) # type is a python function showing the object type
Out[4]: list

In [5]: milist[0] # shows the first element in object list milist
Out[5]: 3

In [6]: milist[0] = 34 # replace the first element in object list milist

In [7]: milist # shows the content of milist
Out[7]: [34, 4, 6, 8, 1]

In [8]: len(milist) # the Python function len gives the number of
# elements in list-type objects

Out[8]: 5

In [9]: range(len(milist)) # the Python function range(n) creates a
# list of integers from 0 to n-1

Out[9]: range(0, 5)

In [10]: list(Out[9]) # the Python function list shows explicitly
# the list assigned to Out[9]

Out[10]: [0, 1, 2, 3, 4]

In [11]: mylist = milist # Another name to milist.
# WRONG way of making a copy of milist

In [12]: mylist
Out[12]: [34, 4, 6, 8, 1]

In [13]: CopyOfmilist = list(milist) # RIGHT way of making a copy of milist

Chapter 2, IPython session 15

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



36 Chapter 2: Whole numbers in Python

In [14]: CopyOfmilist # shows the content of CopyOfmilist
Out[14]: [34, 4, 6, 8, 1]

In [15]: milist[3] = 104 # modify the third element in milist
# (it changes 6 by 104)

In [16]: milist # shows the content of milist
Out[16]: [34, 4, 6, 104, 1]

In [17]: mylist # shows the content of mylist
Out[17]: [34, 4, 6, 104, 1]

In [18]: CopyOfmilist # shows the content of CopyOfmilist. It is unchanged
Out[18]: [34, 4, 6, 8, 1]

In [19]: mylist.remove(4) # way to remove an element from a list

In [20]: mylist # shows the content of mylist just modified
Out[20]: [34, 6, 104, 1]

In [21]: CopyOfmilist[-1] # shows last element of CopyOfmilist
Out[21]: 1

In [22]: CopyOfmilist[-3] # shows third to last element of CopyOfmilist
Out[22]: 6

In [23]: CopyOfmilist.append(300) # A way to append an element to a list

In [24]: CopyOfmilist # shows the content of CopyOfmilist just changed
Out[24]: [34, 4, 6, 8, 1, 300]

In [25]: newlist = mylist + CopyOfmilist # Concatenating lists via another
# use of the + operator and
# assign it to the variable newlist

In [26]: newlist # shows the content of newlist
Out[26]: [34, 6, 104, 1, 34, 4, 6, 8, 1, 300]

In [27]: 2*mylist # concatenating the list with itself
Out[27]: [34, 6, 104, 1, 34, 6, 104, 1]

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



37 Chapter 2: Whole numbers in Python

When working with list, make sure to use the right way of making a copy of it (an
alternative to the way shown on the input cell In [13]:, is to apply the method copy to
the list as in CopyOfmilist = milista.copy()). This way, changes make to any
of the list objects are not transmitted to the other. To find out other methods that can
be applied to a list, type in an IPython input cell (after a list has been defined) the name
of the list appending a dot to it (like milista.) and hit the keyboard TAB key.

There are many other operations that can be done with Python list objects that are outside
the scope of this book. You are invited to read references listed at the end of this chapter, on
page 64.

2.7.2 The wheat problem via the Python for loop

To find the answer of the wheat problem we need to implement the addition 20+21+22+· · · 263,
the terms of which follows the pattern of two to the power of each one of the terms in the list
[0, 1, 2, 3, · · · , 63]. We know how to create such a list via the Python instruction powers
= range(n) with n = 64. We also know how to extract the elements of the list via the
instruction powers[m], with m the indexing of the elements in the list which start from
zero, as the power of two in our addition operation. What we are missing is a procedure to
iterate over the elements of the list and use them as powers of two to be added. Such iterative
procedure can be think of as the execution of a repetitive task. For that Python offers two basic
looping operations the for loop (discussed in this section) and the while loop (discussed in the
next section). Both loops are used to repetitively execute a sequence of Python instructions
while changing a variable from iteration to iteration.

The for loop [https://wiki.python.org/moin/ForLoop] has the standard operating
form:

for iterator in data:
Body or indented set of Python instructions

In the first line of code, for and in are Python reserved keywords, while iterator and data are
variables defined by the user (programmer). The colon (:) at the end of data is a required sign,
as is also required the indentation spaces in the next line, where Body or set of Python
instructions of the loop goes (each line that belongs to the body of the loop must be
indented the same way. The number of indentation spaces is at least one. It is customary to
use a minimum of four spaces).

The iterator is usually a single variable, while data must be a Python objects allowing iterations
on it (as is the case of a list object).

Using the aforementioned elements, the summation in our wheat exercise could be implemented
in the following lines of code (when typing in your IPython console the lines of code of input

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



38 Chapter 2: Whole numbers in Python

cell In [23]:, do not type the dots ...: starting the lines below In [23]:. Once you hit
return after typing the first line of code ending with the colon (:) IPython will type for you these
dots and will even add the indentation spaces for the next line of code):

In [20]: n = 64

In [21]: powers = range(n)

In [22]: lasuma = 0

In [23]: for j in powers:
...: lasuma = lasuma + 2**j
...:

In [24]: print(lasuma)
18446744073709551615

In [25]: lasuma
Out[25]: 18446744073709551615

In [26]:

Chapter 2, IPython session 16

A description of these lines of code is as follows: on input cell In [20]: the variable n is
assigned the value 64, which then is used to build the iterating object range(n) assigned to
be referenced by the variable powers. Then the variable lasuma is assigned the value zero
(this can be rephrased as “initializing to zero the variable lasuma”). As iterator of our for
loop (on input cell In [23]:) we use the variable j. Then the body of the for loop, executed
sixty-four times (from j = 0 to j = 63), is defined by the indented line containing lasuma =
lasuma + 2**j. This line of code is executed as follows: takes the power j of two, add it to
the current value of the variable lasuma, and assign the result to the variable lasuma (this
could be rephrased as “updating the variable lasuma with the new value”). This last action
is repeated 64 times. The first time, the j-iterator takes the value of zero (the first entry
of the list powers), and the variable lasuma is updated to 0 + 20 = 0 + 1 = 1; the second
time, the j-iterator takes the value of one (the second entry of the list powers, and the
variable lasuma is updated to 1 + 21 = 1 + 2 = 3; and so for (for a visual inspection of these
facts, see exercise 2.5, on page 62).

Finally, the lines of code ends on input line (In [24]:), printing on screen the value on the
variable lasuma after exiting the for loop (non indented statements are not part of the body
of the loop). Notice that in writing that line of code, we have explicitly instructed Python to

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



39 Chapter 2: Whole numbers in Python

show the result on the screen by passing to the Python print function the variable lasuma.
We will discuss this function in later chapters. For another way of using it, see exercise 2.5, on
page 62. (input line In [25]: is another (preferred) way of printing on screen interactively).

Now, for completeness, let’s write these lines of code to a file, just to make it our
first formal Python code. We will start by recalling that the lines of code we just wrote
(on page 38) are a bit complex compared with what we had written before. They allow us to
show another advantage of using the IPython console by writing them to a file. For that will
be using the IPython %save magic command (to get a listing of the full set of these commands
execute in an IPython input cell the %lsmagic command. Consult the IPython reference given
at the end of this chapter, on page 64, to understand more about these commands).

Let’s start by noting that the lines of the just presented for loop code we are interested in were
typed in the IPython input cells In [20]:--In [25]:. In your case the numbers of the cells
will be different and (to complete this exercise) you need to take note of them. In case you
have exited your IPython session, please open one and retype the code on page 38. Now type
the following instruction on your available input cell of your IPython session (use the numbers
from your actual IPython session at the end of this instruction):

In [26]: %save myfirstprog.py 24-25
The following commands were written to file `myfirstprog.py`:
n = 64
powers = range(n)
lasuma = 0
for j in powers:

lasuma = lasuma + 2**j

print(lasuma)
lasuma

In [27]:

Chapter 2, IPython session 17

The just create file named (without the quotes) “myfirstprog.py” resides in the current directory
were you started your IPython session, which you can find out by executing (they are Linux
commands, a few of which are listed in the Appendix A.1, on page 17):

In [27]: pwd

Chapter 2, IPython session 18

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



40 Chapter 2: Whole numbers in Python

Out[27]: '/home/srojas/The_prealgebra_book/CH02'

In [28]:

That the file is there can be checked via the command (notice that the answer obtained from
the instruction executed on the input cell In [28]: is not labeled with the usual output cell
Out[28]:) :

In [28]: ls -l myfirstprog.py
-rw-rw-r-- 1 srojas srojas 122 Jan 8 14:14 myfirstprog.py

In [29]:

Chapter 2, IPython session 19

The content of the file can be printed to the computer screen by typing:

In [29]: more myfirstprog.py
# coding: utf-8
n = 64
powers = range(n)
lasuma = 0
for j in powers:

lasuma = lasuma + 2**j

print(lasuma)
lasuma

In [30]:

Chapter 2, IPython session 20

You should congratulate yourself as the printed lines form your first formal Python code (or Py-
thonscripts). We will learn how to write them directly, without using the IPython console later
in the book. Notice that the filename ends with the extension “.py” (that we wrote explicitly
when creating the file). It is a common practice to end Python scripts with that extension (not

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



41 Chapter 2: Whole numbers in Python

supplying that extension when using the “%save” instruction, IPython, by default, would add
it to the given base-name).

To execute this code and any Python script directly from the IPython console, use the IPython
magic command (%run) by typing:

%run full_path_of_the_python_script

Chapter 2, IPython session 21

In our case, since the Python script we want to execute resides in the same directory were
the IPython session was started we only need to supply the name of the script to the (%run)
IPython magic command, as follows:

In [30]: %run myfirstprog.py
18446744073709551615

In [31]:

Chapter 2, IPython session 22

Notice that only one output is printed to the screen. This why we used the print Python
function in the code. Just typing a variable name in a Python script does not send the output
to the screen.

In case you want to delete the file we just created, execute the following (but wait a bit before
doing it if you really want to delete it):

In [31]: rm myfirstprog.py

In [32]: ls -l myfirstprog.py
ls: cannot access myfirstprog.py: No such file or directory

In [36]:

Chapter 2, IPython session 23

As a bonus, before deleting the file we just created, exit the IPython console by typing exit
Copyright © 2018 by Sergio Rojas. All rights reserved.

Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8
License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



42 Chapter 2: Whole numbers in Python

or quit on the available input cell. This will bring you back to the terminal or system shell
where you started the IPython console. In there execute the following instruction (here $ is the
prompt of our terminal or system shell, so you don’t need to type it):

$ python myfirstprog.py
18446744073709551615

Chapter 2, System shell command 2

If things goes smooth and you get printed the answer to our wheat problem on your computer
screen (as shown here), congratulate yourself again as you have executed your first Python
program directly from the terminal or system shell, without need of the IPython console. This
is the state of affairs were we are hitting. Now you can go back to the IPython console and
execute the instruction to delete the Python script, in case you want to do so.

More advanced users of Python could tell you that via Python list comprehension program-
ming you could get the answer to our exercise more succinctly, in the form:

In [39]: sum([ 2**j for j in range(64) ])
Out[39]: 18446744073709551615

Chapter 2, IPython session 24

With some extra practice you’ll be able to get there, don’t worry.

In doing this exercise we have written our first Python program. In general terms, we can say
that to program is the craft of writing efficient instructions that, doing work for us, a computer
can execute (in our exercise we found a way to avoid typing explicitly in the IPython console, as
we did before, on page 32, the addition 20 + 21 + · · ·+ 263). Remember that meaningful typing
mistakes (like typing ∗ instead of ∗∗) are hard to debug, and they can even pass undetected.
By the way, by changing the value of n in the given code, you can check the rightness of the
general result proved on the Appendix of this chapter, starting on page 59.

2.7.3 Relational operators in Python

Previous to introducing the Python while loop, we need to have a clear notion of comparison
or relational operators in Python. These operators are listed in the Table 2.2.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



43 Chapter 2: Whole numbers in Python

Operator Meaning
< less than
≤ less than or equal to
> greater than
≥ greater than or equal to

== equal to
! = not equal to

Table 2.2: Relational operators in Python

As you might have guessed these operators are used to compare objects. The result of such
comparison if a (boolean) True or False value. Here are some examples:

In [7]: 5 <= 63
Out[7]: True

In [8]: 2 == 2
Out[8]: True

In [9]: a = 4

In [10]: 4 == a
Out[10]: True

In [11]: 0 == False
Out[11]: True

In [12]: 1 == False
Out[12]: False

In [13]: 1 == True
Out[13]: True

In [14]: 0 == True
Out[14]: False

In [15]: True == True
Out[15]: True

In [16]: False == True

Chapter 2, IPython session 25

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



44 Chapter 2: Whole numbers in Python

Out[16]: False

In [17]: False == False
Out[17]: True

In [18]:

In this example we should note the use of the double equal sign (= =) to mean equality of
both side terms in an expression. We should also notice that the integer zero (0) is considered
equal to False, while one (1) is considered to be True (see input cells In [11]: and In
[13]: with the corresponding output cells). It is left to you as an exercise to try some other
comparison using these operators.

Expressions involving relational operators can (in an advanced usage of them) be combined with
logical and (&) and or (|) operators to form new compound, complex expressions. We’ll show
its uses later in the book. What we have said about these operators is sufficient to continue
with our discussion on the Python while loop.

2.7.4 The wheat problem via the Python while loop

Recall that to find the answer of the wheat problem we need to implement the addition 20 +
21 + 22 + · · · 263, the terms of which follows the pattern of two to the power of each one of the
terms 0, 1, 2, 3, · · · , 63.

To make this addition, we can do it directly, by adding all the terms at once as we did on
page 32. Another way is to do it step by step (like walking up an stair) by adding term
by term. That is, start with 20 (let’s call it the ground floor), then add to it 21 (your first
step up in the stair) 20 + 21, then add to this result 22 (your second step up in the stair), to
obtain 20 + 21 + 22, then add to this new result 23 (your third step up in the stair), to obtain
20 + 21 + 22 + 23, and so forth, until reaching the step sixty-three.

You might have notice that to do the addition following the aforementioned procedure, one
needs a mean to store or keep track of partial results. For instance, when we add the two
terms 20 + 21, it would be nice to hold the corresponding result of that addition so it can be
added, in the next step, to 22 without we typing it again in the form 20 + 21 + 22. Then,
this new result needs to be saved and added, in the next step, to 23, and so on. This can be
done with a Python variable. Let’s call it lasuma, and it can be started holding the value of
zero lasuma = 0 (in programming this is said to be initializing a variable to zero) because, as
you have learned in the prealgebra course work, zero added to any number keep the number
unchanged. Then, at any step j of our procedure this variable can be updated to hold the new
value lasuma = lasuma+ 2j. Recalling that in Python programming the equal (=) sign means
to execute the operations on the right of the sign and put (store) the result on the variable
at the left of the sign, Python does this operation by computing first 2j and then adding to it

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



45 Chapter 2: Whole numbers in Python

the value already contained in the variable lasuma, the result is then stored on the variable
lasuma, erasing whatever was in there before.

The stated procedure could be witting in the following way (in programming this is called an
algorithm):

1. Set (initialize) the variable: lasuma = 0
2. Set (initialize) the exponent j = 0
3. Update the variable lasuma = lasuma+ 2j

4. Update the exponent by one: j = j + 1
5. Check the exponent j ≤ 63
6. If j ≤ 63, Repeat steps 3--6, otherwise continue next step 7
7. Show the value on the variable lasuma

Accordingly, we need a way to automatically implement the stated procedure. For that we will
use the Python while loop which has he following general structure:

while (condition):
Body or Indented set of instructions to be executed

Not only comparisons between numbers can be used as conditions in while loops: any expression
that has a boolean (True or False) value can be used. Such expressions are known as logical or
boolean expressions. The keyword

In the first line of code, while is a Python reserved keyword, while condition, which is provided
by the user (programmer), must be any Python expression that can be evaluated to either logical
value True or False. The (indented) body of the loop (Instructions to be Executed)
is executed while the condition takes the value True. The colon at the end of condition is a
required sign, as is also required the indentation spaces for each instruction forming the body
of the loop. The number of indentation spaces is at least one, and is the same for each line
that belongs to the body of the loop (it is customary to use a minimum of four spaces).

Using the aforementioned elements, our devised procedure to perform the summation in our
wheat exercise could be implemented in the following lines of code:

In [1]: n = 63

In [2]: lasuma = 0

In [3]: j = 0

Chapter 2, IPython session 26

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



46 Chapter 2: Whole numbers in Python

In [4]: while (j <= n):
...: lasuma = lasuma + 2**j
...: j = j + 1
...:

In [5]: lasuma
Out[5]: 18446744073709551615

In [6]: 2**64 - 1 == lasuma
Out[6]: True

In [7]:

A description of these lines of code is as follows: on input cell In [1]: the variable n is
assigned the value 63, which then is used build the boolean (True or False) expression (j <= n)
forming the condition of the while loop. Input cells In [2]: and In [3]: initialize to zero
both variables lasma (used to hold partial sum of the terms in the addition operation, until
reaching the final value of it after the while loop ends). and j (used to control the termination
of the while loop).

Following the flow of our Python lines of code, when the input cell In [4]: is reached, the
variable j holds the value of zero and the condition of the while loop (j <= n) takes the value of
True (can you see why?), having as consequence that the lines of code forming the body of the
while loop are executed, by first assigning to the variable lasuma = 1 (can you see why?) and
then updating the variable j = 1 (can you see why?). The execution of the while loop continues
by checking again its condition (j <= n), which once more evaluates to True, updating this
time lasuma = 3 and j = 2, repeating again the checking of the condition (j <= n), etc.
This process continues (see exercise 2.6, on page 63) until the variable j = 64, after which the
condition of the while loop (j <= n) is no longer True (can you recall why?) and the loop is
exited.

After exiting the while loop, the flow of the code continues executing line of code on input
line In [5]:, which prints on screen (see output line Out[5]:) the expected answer for
the wheat problem. On input line In [6]: we makes use of the Python equal operator to
compare the obtained result kept on the variable lasuma with the known result (264 − 1). As
expected, the comparison is shown to be True on the corresponding output cell Out[6]:.

We let you as an exercise to write this program to a file following the discussion starting on
page 39.

In summary, while loop is another Python alternative to implement in Python repetitive tasks.
And you can congratulate yourself as reaching this far you have gone through your second
Python program. Again, by now you have enought knowlege of Python programing to start

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



47 Chapter 2: Whole numbers in Python

doing your own coding to try (iteractively, in IPython console) many of your prealgebra routine
and non-routine exercises involving number crunching.

Both the for loop and the while loop are powerful Python instructions. We will made use of
them in more complex situations, including the reading and writing of files.

2.8 The guess two digits game explained using SymPy
A popular game goes a follow (we’ll follow the steps in an IPython session, but you are encour-
aged to use pencil and paper):

1. You ask a friend to think and write down (hide from you) a whole number containing
three digits:

In [1]: thenumber = 371

In [2]: thenumber
Out[2]: 371

In [3]:

Chapter 2, IPython session 27

2. Now you ask your friend to write (hiding it from you, of course) the number in reverse
order:

In [3]: reversed_number = 173

In [4]: reversed_number
Out[4]: 173

In [5]:

Chapter 2, IPython session 28

3. In this step you ask your friend to (again, you are not allowed to see it) subtract the
smaller number from the larger one:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



48 Chapter 2: Whole numbers in Python

In [5]: difference = thenumber - reversed_number

In [6]: difference
Out[6]: 198

In [7]:

Chapter 2, IPython session 29

4. At this point your friend should tell you the number in the ones place. From that you will
be able to tell your friend the other two digits, in the respective order. In our example
she must tell you the number 8 (which is the one taking the ones place). From that you
will tell her (of course without looking her writing) that the other two digits are 19.

Could you explain how will you be able to guess the two hidden (from you) digits in this game?

This game allows us to anticipate a brief introduction to SymPy : the module to perform
symbolic or algebraic computations in Python. It will help us to give you necessary elements
to answer the posed question.

Certainly, you are encouraged to also follow the steps we are going to execute in the computer
using pencil and paper. That will help you get a deeper view of the mathematical behavior of the
numbers involved in the game. Here we will be happy with showing the steps, without given
a comprehensive explanation of SymPy (for that you might one to read the SymPy manual
[http://sympy.org/en/index.html]. Many other functionalities of SymPy will be
described in the next and the following chapters, specially when covering the topic of solving
equations algebraically). Accordingly, consider this example as a motivational argument to
continue your study of Python.

Recall, from your prealgebra course work, that a number of three digits xyz can be written in
the form xyz = x×100 + y×10 + z, where x, y, and z can be any of the digits (0, 1, 2, 3, 4, 5,
6, 7, 8, and 9). In Python, the above recipe can be implemented in algebraic terms via SymPy
as follows (remember that whatever is after the numeral or hastag (#) symbol is a comment
in Python and you do not need to type them as you follow the example).

We start by making available some SymPy functionality into any IPython session. In this
example we are going to do so as we need a particular SymPy function (in other setups it is
common to call everything we are going to use all at once, at the beginning).

Our first SymPy function will be symbols. It is the function that allows us to define variables,
so Python will consider them as symbols not having a numerical value assigned to them, as we
have been doing previously. This is done in the following lines of code:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



49 Chapter 2: Whole numbers in Python

In [7]: from sympy import symbols # 'symbols' is a sympy function used to

In [8]: x, y, z = symbols('x, y, z') # defines Python variables as symbols
# (in this case x, y, and z)

In [9]:

Chapter 2, IPython session 30

Take note of the syntax from sympy import function. This is one of the recommended
ways to make available a particular function from any Python module to the current
computational session. This is used if knowing (before hand) we are not replacing any
other existing function with that name in our setup or (if that happen) it is irrelevant.
We will encounter other recommended ways in the chapters to come.

The SymPy function symbols is made available to the current IPython session on input cell In
[7]:, and the variables x, y, and z are defined as symbols on input cell In [8]:.

In case you want to get some help on what the SymPy function symbols does or to see
some extra examples of using it, any time after executing the line of code on input cell
In [7]: you could execute at any input cell the command symbols? or symbols?? (this
method can also be applied to get help for any other function, and only works in the
IPython console). To move around the displayed help page you could use the up and
down keys of your computer keyboard. Hitting the space bar will move the help page
screen by screen. You could quit the help page by pressing (at any time) the keyboard q
key.

Now, after having defined the variables x, y, and z we can use them as generic names for any
digit that makes any three digit number. Consequently, the next line of codes execute the steps
of the game (pay attention that Python does not output any error for trying to use a variable
that has not been assigned a value):

In [9]: thenumber = x*100 + y*10 + z # STEP 1: a three-digit whole number

In [10]: thenumber # x, y, and z are symbols not numbers

Chapter 2, IPython session 31

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



50 Chapter 2: Whole numbers in Python

Out[10]: 100*x + 10*y + z

In [11]: reversed_number = z*100 + y*10 + x # STEP 2: reversing the number

In [12]: reversed_number
Out[12]: x + 10*y + 100*z

In [13]: difference = thenumber - reversed_number # STEP 3: takes the
difference

# This assumes 'thenumber'
# is the largest number

In [14]: difference
Out[14]: 99*x - 99*z

In [15]:

The just shown lines of codes does not need much explanation. You will be able to follow them
with some attention. If you have any trouble, go back and follow the steps of the numerical
example starting, on page 47.

To make a bit clear the result obtained at the IPython output cell Out[14]:, we would
re-arrange the terms in that result by factoring it. This is done via the SymPy function
factor, which allow the symbolic factorization of mathematical expressions. This is done in the
following lines of code:

In [15]: from sympy import factor # 'factor' is another sympy function
# used to perform symbolic factorization

In [16]: difference = factor(difference) # factor the variable 'difference'
# and reassign the result
# to it.

In [17]: difference # checking that the result has been factorize
Out[17]: 99*(x - z)

In [18]:

Chapter 2, IPython session 32

The result shown on the IPython output cell Out[17]: tells us to take the difference between
the left most digit (the one in the hundreds place) and the right most digit (the one in the ones

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



51 Chapter 2: Whole numbers in Python

place) of the given number and multiply the result by ninety-nine. Isn’t cool the simplicity of
this result after so many arithmetic operations!!

Now, Recall that this result was obtained taken for granted that the given number was larger
than the reverse number. But, what happen if that is not the case, that the reverse num-
ber is the largest one between the two. Well, let’s find out that in the following line of
codes:

In [18]: difference2 = reversed_number - thenumber # STEP 3 in case the
# the largest number is
# the 'reversed_number'

In [19]: difference2
Out[19]: -99*x + 99*z

In [20]:

Chapter 2, IPython session 33

The result (at the IPython output cell Out[19]:) does not look very different than the one
we already know. To make it a bit clear, let’s re-arrange the terms in that result by factoring it.
This time it will be done via the SymPy function collect_const, which allow the symbolic
factorization of numbers in mathematical expressions (we let you as an right away exercise to
see what happen is using the factor function as we did above). The following lines of code
shows the result:

In [20]: from sympy import collect_const # 'collect_const' is a sympy function
# used to collect numbers

In [21]: collect_const(difference2)
Out[21]: 99*(-x + z)

In [22]: (-x + z) == (z - x)
Out[22]: True

In [23]:

Chapter 2, IPython session 34

This time the result is shown at the IPython output cell Out[21]:. It is different from what
we obtained previously in what the difference is the other way around as obtained there. In

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



52 Chapter 2: Whole numbers in Python

this case we need to take the difference between the right most and the left most digits of the
given digits and (as before) multiply the result by ninety-nine.

In any case, carrying out the steps of the game in symbolic form, we arrive at the result that
the difference between the number and its reverse form has the form 99 ∗ (x− z) (if digit x is
larger than digit z) or 99 ∗ (z − x) (if digit z is larger than digit x). At this point you need to
convince yourself that in either case the involved difference can take only any of the values (0,
1, 2, 3, 4, 5, 6, 7, 8, and 9) which needs to be multiplied by the number 99. This is done in the
following Python lines:

In [26]: possible_values = list(range(10))

In [27]: possible_values
Out[27]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [28]: for i in possible_values:
...: print('(x - z) or (z - x)={0} ==> 99x{0} = {1:03d}'.format(i,

99*i))
...:

(x - z) or (z - x)=0 ==> 99x0 = 000
(x - z) or (z - x)=1 ==> 99x1 = 099
(x - z) or (z - x)=2 ==> 99x2 = 198
(x - z) or (z - x)=3 ==> 99x3 = 297
(x - z) or (z - x)=4 ==> 99x4 = 396
(x - z) or (z - x)=5 ==> 99x5 = 495
(x - z) or (z - x)=6 ==> 99x6 = 594
(x - z) or (z - x)=7 ==> 99x7 = 693
(x - z) or (z - x)=8 ==> 99x8 = 792
(x - z) or (z - x)=9 ==> 99x9 = 891

In [29]:

Chapter 2, IPython session 35

Considering that your friend should tell you the units place digit, can you see the pattern which
allows you to guess correctly the other two digits? (hint: besides noticing the middle digit, take
a look at the result of adding the hundreds place and the units place digits). In section 4.4,
starting on page 156, this game is programmed to be played with the computer.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



53 Chapter 2: Whole numbers in Python

2.9 Some common errors due to unfollowing Python
rules

Before digging deeper into Python programming, it is convenient to be aware of some problems
that could arise when executing Python scripts either in the IPython console or directly from a
terminal or system shell. This will help to keep away from you states of frustration and anxiety
when doing Python programming.

The nice thing about these set of errors (a full list of them can be found at [https://docs.
python.org/3/library/exceptions.html] is that the Python interpreter is able to
capture them, raising (for the newcomer) cryptic messages, many of which are non intuitive
ones (you might have experienced some of them already). Even though you need to pay
attention to avoid this errors (you don’t want that after several days your running program
crash because of one of them) another set of (more dangerous) programming errors are logical
ones (also called (software bugs) which are hard to find and the interpreter does not know
anything about them. These kind of errors eventually could lead to computational numerical
disasters (for some stories see On Software Bugs and Computational Numerical Disasters in
the reference section of this chapter, on page 64).

Thus, what follows is a brief introduction of some common errors the interpreter could capture
pointing out why they happen. The idea is that you can start building a library based on your
experience to deal with them whenever they occur to you:

• IndentationError: This might happen when an input instruction start with unnecessary
indentation (extra white spaces beginning the code instruction. )

In [1]: a = 2 # rightly indented

In [2]: b = 9 # wrongly indented. This IPython does no through an error

In [3]: for i in [1,2,3]:
...: a = 2 # set the indentation level
...: b = 4 # # wrongly indented. An error happen
File "<ipython-input-3-1a6820f6308e>", line 3
b = 4 # # wrongly indented. An error happen
^

IndentationError: unexpected indent

In [4]: for i in [1,2,3]:
...: a = 2 # set the indentation level
...: b = 4 # # wrongly indented. An error happen

Chapter 2, IPython session 36

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



54 Chapter 2: Whole numbers in Python

File "<tokenize>", line 3
b = 4 # # wrongly indented. An error happen
^

IndentationError: unindent does not match any outer indentation
level

In [5]: for i in [1,2,3]:
...: a = 2 # fix indentation level. internal spaces are ignored
...: b = 4 # right indentation
...: c = 5 # right indentation
...:

In [6]:

As shown on input line In [2]:, recent versions of IPython ignores the extra
indentation starting a line of code. Nevertheless, the write way of writing starting
line code instructions is with the right indentation level as shown on the input lines
In [1]: and In [5]:. Notice the hat symbol ^ under the wrongly indented

variable b. It is the way Python uses to tell us where we can look for what is causing
the error.

• NameError: this error happen when Python encounters a symbol or variable name that
it doesn’t recognize.

In [7]: z
----------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-7-a8a78d0ff555> in <module>()
----> 1 z

NameError: name 'z' is not defined

In [8]:

Chapter 2, IPython session 37

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



55 Chapter 2: Whole numbers in Python

• SyntaxError: this error happen when an instruction is wrongly written. Here are some
examples:

In [15]: print a) # open left enclosing round parenthesis is missing
File "<ipython-input-15-12497d19cc2b>", line 1
print a)

^
SyntaxError: Missing parentheses in call to 'print'

In [16]: print(a) # error goes away using enclosing set of round parenthesis
2

In [17]: a b # something is missing between a and b
File "<ipython-input-17-7557d2f3a6ad>", line 1
a b
^

SyntaxError: invalid syntax

In [18]: a*b # No error if inserting an operator
Out[18]: 8

In [19]:

Chapter 2, IPython session 38

• TypeError: this error happen when combining Python objects of different nature in a
manner not allowed by Python:

In [20]: [1,2] + [1,2,3] # the + sing concatenate lists
Out[20]: [1, 2, 1, 2, 3]

In [21]: [1,2] + [1,2,3]
Out[21]: [1, 2, 1, 2, 3]

In [22]: 2 + [1,2,3] # the + sign is not defined between this two objects
----------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-6ca8d9b5b92b> in <module>()
----> 1 2 + [1,2,3]

Chapter 2, IPython session 39

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



56 Chapter 2: Whole numbers in Python

TypeError: unsupported operand type(s) for +: 'int' and 'list'

In [23]:

• ZeroDivisionError: this error happen when somewhere a division by zero is being
executed:

In [23]: 4/0
----------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
<ipython-input-23-6de94738d89d> in <module>()
----> 1 4/0

ZeroDivisionError: division by zero

In [24]:

Chapter 2, IPython session 40

• IndexError: this error happen when trying to get elements of objects supporting index
(like list) beyond its length:

In [24]: milista=[10, 2, 3] # a list having three elements

In [25]: milista[0] # first (leftmost) element in the list
Out[25]: 10

In [26]: milista[2] # last (rightmost) element in the list
Out[26]: 3

In [27]: milista[3] # wrong element in the list
----------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-27-ca13b927419f> in <module>()
----> 1 milista[3] # wrong element in the list

IndexError: list index out of range

Chapter 2, IPython session 41

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



57 Chapter 2: Whole numbers in Python

In [28]:

• ValueError: this error happen when trying to get elements outside the allowed range

In [28]: milista.index(2) # get the third element of the list
Out[28]: 1

In [29]: milista.index(2) # get the index of the object 2 in the list
Out[29]: 1

In [30]: milista[milista.index(2)] # get the element of index 1 in the
list

Out[30]: 2

In [31]: milista.index(200) # no element 200 is the list. An error happen
----------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-31-f11de82a96b7> in <module>()
----> 1 milista.index(200) # no element 200 is the list. An error happen

ValueError: 200 is not in list

In [32]:

Chapter 2, IPython session 42

Remember that any of these errors will make your program crash. That is an unwanted behavior
if it happen after hours or days of executing the program. Even though Python will capture
them, it if better for us to find them first, before executing the program.

2.10 Chapter Summary
In this chapter you have done a lot! By now you can continue writing and executing computa-
tions with whole numbers using Python via the IPython console using the rules of Python you
learned in this chapter which included defining variables, creating Python list objects, applying
Python relational operators, and performing repetitive computations via the Python for and
while loops. You also were able to work out and understand the math behind the popular game

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



58 Chapter 2: Whole numbers in Python

o guessing two digits which you can use to impress any audience not reading this book. At the
end of the chapter, you became acquainted with some common errors hat could happen when
wrongly applying the Python rules.

In the next chapter we will continue with you working on some extra computation with whole
numbers, including setting and solving equations algebraically via the SymPy module. We also
we will studying more Python objects to make your programming stronger in the following
chapters,

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Appendix of Chapter 2

A.1 Proof that for all n ≥ 0, 20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1

In this appendix we will write a proof that 20 + 21 + 22 + · · ·+ 2n = 2n+1− 1 for all n ≥ 0. This
proof uses mathematical induction

The proof start by first checking that the equality holds for n = 0:

20 = 21 − 1

1 = 2− 1

1 = 1

Then, we check the equality hods for n = 1:

20 + 21 = 22 − 1

1 + 2 = 4− 1

3 = 3

And again we check it holds for n = 2:

20 + 21 + 22 = 23 − 1

1 + 2 + 4 = 8− 1

7 = 7

The fact that the equality holds for these few values, some how it guides our intuition to get
ways to verify it for any value n ≥ 0. If we find a value for which the equality does not hold,
then we have proved it to be wrong via a counterexample.

Since that is not the case, we have not found any counterexample disproving the equality, let’s
proceed by assuming it might be true for a general whole number n = k. If that is true, then
it should happen that:

20 + 21 + 22 + · · ·+ 2k = 2k+1 − 1 (A.1)

59



60 Appendix of Chapter 2

Taking for granted that this last equation is true, then (since k could be any whole number)
it should also be true that the equality holds for the next whole number after k. That is, the
equality should also holds for n = k + 1, which means that:

20 + 21 + 22 + · · ·+ 2k

︸ ︷︷ ︸
Left hand side of equation (A.1)

+2k+1 = 2k+2 − 1 (A.2)

We can see that the enclosed terms by the under-brace bracket on the equation (A.2) is equal
to the right hand side of the equation (A.1). This means that we can replace the enclosed part
by the under-brace bracket on the equation (A.2) by the the term on the right hand side of the
equation (A.1). In doing this replacement we obtain:

2k+1 − 1 + 2k+1 = 2k+2 − 1 (A.3)
2× 2k+1 − 1 = 2k+2 − 1 (A.4)

2k+2 − 1 = 2k+2 − 1 (A.5)

The result of this last equation (A.5) confirms what we wanted to prove. That is, we have
proved that 20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1 for all whole number n ≥ 0.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Exercises of Chapter 2
Exercise 2.1 Using an IPython console execute the following Python instructions:

v0 = 5
g = 10
t = 6
y = v0*t - (g*t**2)/2
print(y)

Compare the previous way of computing with the next one:

5*6 - (10*6**2)/2

Which way of computing do you like?

Exercise 2.2 What do you think will be the output of the following computing instructions:

a = 5; b = 5; c = 5
a/b + c + a*c
a/(b + c) + a*c
a/(b + c + a)*c

Confirm your insight executing in an IPython console these instructions.

Exercise 2.3 In an IPython console explore how to plot a data set executing the following
(perhaps now cryptic) lines of code:

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 10, 5
x = mu + sigma * np.random.randn(10000)

61



62 Exercises of Chapter 2

plt.hist(x, 50, normed=1, facecolor='g')
plt.xlabel('X')
plt.ylabel('Y')
plt.title(r'$\mu=10,\ \sigma=5$')
plt.grid(True)
plt.show()

Exercise 2.4 In an IPython console explore some capabilities of symbolic computation via
SymPy executing the following (perhaps now cryptic) instructions:

del x, y;
x = 1
x + x + 1
from sympy import Symbol
x = Symbol('x')
x + x + 1
x.name
type(x)
s = x + x + 1
s**2
(s + 2)*(s - 3)
from sympy import expand, factor
expand( (s + 2)*(s - 3) )
factor( 4*x**2 + 2*x - 6 )
factor( x**3 + 3*x**2 + 3*x + 1 )
from sympy import pprint
pprint(s)
pprint(factor( x**3 + 3*x**2 + 3*x + 1 ))
pprint( expand( (s + 2)*(s - 3) ) )
from sympy import solve
solve( (s + 2)*(s - 3) )
solve( 4*x**2 + 2*x - 6 )
solve( s )

Exercise 2.5 In an IPython console execute the following lines of code (a modification of the
code presented on page 38) illustrating the values taken by the j-iterator and the variable
lasuma on each iteration of the for loop (you might want to change the value of n to a smaller
value, so the printed outcome can fit on screen):

n = 64
powers = range(n)

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



63 Exercises of Chapter 2

lasuma = 0

for j in powers:
lasuma = lasuma + 2**j
print('At j = {0}, lasuma = {1}'.format(j, lasuma))

print(lasuma)

In this code we used the Python print() function, which is used to print output to the screen
of the computer. We will have a further discussion of this function later in the book (see
section 4.2, on page 146).

Exercise 2.6 On an IPython console execute the following lines of code (a modification of the
code presented on page 45) illustrating the values taken on each iteration by the control variable
of the while loop j and the variable lasuma. (you might want to change the value of n to to
a smaller value, so the printed outcome can fix on screen):

n = 63

lasuma = 0

j = 0

while (j <= n):
lasuma = lasuma + 2**j
print('At j = {0}, lasuma = {1}'.format(j, lasuma))
j = j + 1

print(lasuma)

In this code we used the Python print() function, which is used to print output to the screen
of the computer. We will have a further discussion of this function later in the book (see
section 4.2, on page 146).

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



References of Chapter 2

Books and/or Articles
• Marecek, L. and Smith, M. A. (2017). Prealgebra, Rice University, OpenStax
https://openstax.org.
Book available for free at: http://cnx.org/content/col11756/1.9

• Rossant, C. (2013). Learning IPython for Interactive Computing and Data Visualiza-
tion, Packt Publishing.

• Tahan, M. (1993) The man who counted: a collection of mathematical adventures, W.
W. Norton & Company.

References on the WEB
• The man who counted (english translation):
https://archive.org/details/TheManWhoCounted-English-MalbaTahan
The man who counted (spanish translation):
http://www.librosmaravillosos.com/hombrecalculaba/index.html

• A wikipedia entry for the wheat problem presented on page 32 is at:
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

• A wikipedia entry for heart bit rates mentioned on page 33 is at:
https://en.wikipedia.org/wiki/Heart_rate

• On Software Bugs and Computational Numerical Disasters:
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/List_of_software_bugs
www5.in.tum.de/~huckle/bugse.html
http://www.parseerror.com/bugs/

64



3

Applications involving Whole Numbers via Python
“I didn’t fail once, I invented the lightbulb. It was just a 2000-step process.”

Thomas Edison

3.1 Introductory remarks
In the previous chapter we started to write small Python programs taking advantage of the
study of the basic operations with whole numbers covered in your Prealgebra course work.

In this chapter we will continue introducing more Python key concepts that will allow you to
write even more complex programs. We will introduce the Python if statement as well as the
and (&) and or (|) which are helpful to combine relational operators to generate boolean states
of True or False values that can be applied to fork or bifurcate the execution of a Python
program. Since we will make emphasis on writing programs, we will start the chapter with a
brief mention of the text editors suitable for it.

In this regards, this chapter is particularly important because you will go more in deep into
the mechanisms of programming as you study with a careful read the way we structure the
programs (efficient or not) presented in this chapter.

As we mentioned earlier in the text, the task of programing requires high order complex thinking
skills which during the development of the steps to write a program activates thought processes
proper of an active learner acquiring independent computational thinking skills and perfor-
mance. In fact, to write a program successfully demands the execution of three major steps:
designing (the algorithm)--implementing (in a programing language the algorithm)--assessing
(the correctness of the program), which are basic cognitive functions recognized as universally
necessary to enable good performance in problem solving.

The aforementioned prescribed steps might be familiar to you if you recall the general steps
of the scientific method which you have practiced in a laboratory session elsewhere (i.e. in a
Physics or Chemistry class). Additional, useful discussion on applying general problem-solving
strategies are found in the reference cited on page 144. The analogy with laboratory work
could be of interest because as you get use to design, implement, and test algorithms that finds
solutions to problems you will actually executing a simulated experiment, hence the buzzwords
computer simulations will be part of your vocabulary.

Accordingly, after finishing this chapter, you’ll be equipped with some extra basic Python tools

65



66 Chapter 3: Some applications involving Whole Numbers

that will help you fully explore numerically practically all of the topics, including the solving
equations (not only the ones involving whole numbers), that you will be studying in your
Prealgebra official course work, A practical non-routine example (the sailors, the coconuts, and
the monkeys problem( will be discussed in detail (including its analytical solution).

3.2 Writing program using an appropriated text editor
As shown by the examples of the small Python codes you wrote and executed in the previous
chapter, we are quickly reaching the point on which typing lines of code in the IPython console
will be pretty clumsy. A better option would be to type the lines the code directly in a file and
execute the file either from the system shell or terminal (using the python command) or from
the IPython console via the IPython magic %run command, as we did in the previous chapter.
For that we need to use an appropriated text editor such as the Windows notepad editor or the
Linux gedit editor. There is a jungle of programming text editors available out there. As you
get acquainted with some of them you’ll be making your choice. The ones mentioned above
are enough for this and more advanced programming course. Let’s mention that the Jupyter
Notebook is another option to write and execute Python scripts, but we are not covering it in
this book.

Keep in mind that when writing Python scripts, you need to follow strictly the Python rules
as we have been doing in the IPython console.

3.2.1 A brief introduction to the gedit editorindexText editor Gedit

In case you are reading this book accompanied with Linux , the gedit text editor is a good
choice to start writing your programs. In the Ubuntu Linux distribution it can be installed via
the command (executed in the system shell or terminal):

$ sudo apt-get install gedit

Chapter 3, System shell command 1

Before continuing, let’s us type and execute in an IPython console the following lines of code
(we will explain them in a while, so don’t worry if you don’t understand what this code does)
:

In [1]: x = [ 0, 3, 1, 2, 4, 6, 5, 0] # Defines a list holding a few numbers

Chapter 3, IPython session 1

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



67 Chapter 3: Some applications involving Whole Numbers

In [2]: count = 0 # Initialize a counter to hold the value zero

In [3]: for i in x: # start a loop over the list
...: y = i//2 # take the exact/inexact result of dividing i by two
...: if ((y + 1) == i): # Applies a conditional IF operation
...: count = count + 1 # IF condition is True, update by one count
...:

In [4]: s1 = 'In the list, {0} elements (j) satisfies that
'.format(count)

In [5]: s2 = 'j//2 + 1 == j'

In [6]: print(s1 + s2)
In the list, 2 elements satisfies that element//2 + 1 == element

In [7]: %save my_program.py 1-6

After executing the last line of code (input cell In [7]:) you’ll have created the file name
my_program.py in your current working directory. You can list or executed this Python
program from the IPython console by executing the commands:

In [9]: ls -l my_program.py # list the program
-rw-rw-r-- 1 srojas srojas 494 Jan 21 15:45 my_program.py

In [10]: %run my_program.py # run or executing the program
In the list, 2 elements (j) satisfies that j//2 + 1 == j

In [11]: pwd # list the current working directory
Out[11]: '/home/srojas/The_prealgebra_book/CH03'

In [12]: cp my_program.py my_program_backup.py # make a copy of your program

In [13]: ls -l my_program_backup.py # make sure the copy was meke correctly
-rw-rw-r-- 1 srojas srojas 494 Jan 21 16:01 my_program_backup.py

In [14]:

Chapter 3, IPython session 2

Before making changes to any working program it is a good idea to make a copy of it, as we
Copyright © 2018 by Sergio Rojas. All rights reserved.

Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8
License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



68 Chapter 3: Some applications involving Whole Numbers

Figure 3.1: Opening of the file my_program.py in gedit

did here on input cell In [12]:. This copy can be made directly from the Linux system shell
or terminal the same cp command as used in the IPython console.

Now, assuming the gedit text editor is already installed in your system, you can start it by
execiting in a system shell or terminal the command:

$ gedit

Chapter 3, System shell command 2

In case a program is already stored in a file (like my_program.py), you can open it for editing
via executing (where the program resides) in the system shell or terminal the command (note
that this way of starting gedit also works if the file name does not exist. It will be taken as
the default filename to save anything you write via gedit) :

$ gedit my_program.py

Chapter 3, System shell command 3

After executng that command, you’ll be presented with a gedit window as shown in Figure 3.1.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



69 Chapter 3: Some applications involving Whole Numbers

The first thing to notice about the gedit text editor is that you can move around the text
using the mouse as well as the keyboard arrow keys for such task. The second thing is that
by default it labels the lines written on it on the left of the windows (in our case, he file we
are looking at contains 11 written lines). To activate or deactivate that feature, you can go to
the Edit menu and choose the Preferences options. In the windows that opens check or
uncheck the box to the left of Display line numbers. That Preferences windows also
allows the changing of the gedit windows letters font size. For that, you hit

th the left mouse buttom the windows tab Font & Colors. In that section you should
uncheck the box to the left of Use the system fixed width font, and choose the
Editor Font tab to select the font size you want to use. Onece chosen, you hit the select
tab to keep the changes or hit the close tab to leave things unchanged.

To save changes done to the program, you could hit the seve tab on top of the gedit window.
You’ll be prompted for a filename in case you are dealing with a new file. Alternatively, you
could go to the File menu and then choose Save to keep things in the current name or Save
as to store things in a new file. To exit the gedit text editor choose to Quit option from
the File menu.

The few instructions of the gedit text editor we have worked with are enought to start writing
and or modifying the programs we will be writing and executing in this and subsequent chapters
of the book. Please read the gedit text editor manual to become proficient in its usage in
case you decide to keep it as your working tool for writing Python scripts.

3.3 The Python if statement
An important idea of programming is the control of the execution flow of a program [https:
//en.wikipedia.org/wiki/Control_flow]. We have seen it before, when working
with the for and while loops in the previous chapter. Going in and out of the loop is a
fork in the execution of a program. Python also includes the if statement [https://docs.
python.org/3/reference/compound_stmts.html#if] along with other options to
interrupt the lineal execution of a program [https://docs.python.org/3/tutorial/
controlflow.html].

3.3.1 The simple if statement

The Python if statement simple has the following construction:

if (condition):
Body or set of indented instructions to be executed

This if statement has a structure similar to the while loop: the body of this if statement or
set of indented instructions to be executed are executed whenever condition is True, otherwise
they are ignored.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



70 Chapter 3: Some applications involving Whole Numbers

Here is our illustrative example. As you can recognize, it is the program you already wrote
as instructed in page 66, also shown in Figure 3.1, on page 68: (after the discussion following
these lines of code, for the subsequent sections to come we will assume that you have saved this
code in the file my_program.py, as instructed on page 66):

In [5]: x = [ 0, 3, 1, 2, 4, 6, 5, 0] # Defines a list holding a few numbers

In [6]: count = 0 # Initialize a counter to hold the value zero

In [7]: for i in x: # start a loop over the list
...: y = i//2 # take the exact/inexact result of dividing i by two
...: if ((y + 1) == i): # Applies a conditional IF operation
...: count = count + 1 # IF condition is True, update by one count
...:

In [8]: s1 = 'In the list, {0} elements (j) satisfies that
'.format(count)

In [9]: s2 = 'j//2 + 1 == j'

In [10]: print(s1 + s2)
In the list, 2 elements satisfies that element//2 + 1 == element

In [11]:

Chapter 3, IPython session 3

Following the flow of these lines of Python code, you’ll find that what it does is to take a set of
numbers (stored in the Python list x, on input cell In [5]:) and counting (see the input cells
In [6]: and the indented instruction under the simple if statement) the number of them
satisfying the property that adding one to the (exact or inexact) result of dividing each number
by two (see the first indented instruction under the for loop, on input cell In [7]:) the same
number is obtained (see the condition of the simple if statement). Certainly you can follow
these steps by hand computation, using pencil and paper (and we encourage you to do so) to
get a better idea of how the program works. Think, now, on doing it by hand computation
over millions of numbers.

We left you as an exercise to simplify a bit the number of lines in this code. Can you think
on how the program can be modified if you want to print on screen the numbers (in the given
Python list on input cell In [5]:) satisfying the stated property?

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



71 Chapter 3: Some applications involving Whole Numbers

3.3.2 The if--else statement

The simple if statement just studied left us with a sense of incompleteness. In fact when
doing a plan to go, let’s say to the beach, we usually plan ahead to do something else if, for
example, the weather does not help. And in that kind of situation is where the if--else
statement comes to play. Its general structure (as you might have anticipated) is as follows:

if (condition):
Instructions executed IF (condition) is True

else:
Instructions executed IF (condition) is False

Let’s add some extra (unnecessary) instructions to our previous program, on page 70. For that,
you want to open in the gedit text editor the file my_program.py, as we did before from
system shell o terminal by executing:

$ gedit my_program.py

Chapter 3, System shell command 4

After that, modify the file to read exactly as shown in Figure 3.2 (on page 72) save it and quit
from the gedit text editor (in case you have trouble editing the file, go to the directory named
chapter_03 of the programs that comes with this book that you can download from the
respective companion web site mentioned in the Preface. In there, find the file named chap03_
prog_02_ifelse.py and make a copy of it via executing the command cp chap03_prog_
02_ifelse.py my_program.py in the system shell or terminal. Alternatively, you can
continue with what follows replacing my_program.py by chap03_prog_02_ifelse.py).

Once you are done with the changes in the file and saved it, let’s see the content of the file in an
IPython console by executing the line of code on input cell In [3]: below:

In [3]: more my_program.py

Chapter 3, IPython session 4

Executing that line of code will show you on the computer screen the content of the file my_
program.py:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



72 Chapter 3: Some applications involving Whole Numbers

Figure 3.2: An example using the if--else construction

x = [ 0, 3, 1, 2, 4, 6, 5, 0] # Defines a list holding a few numbers

count = 0 # Initialize a counter to hold the value zero

count2 = 0 # Initialize a counter to hold the value zero

for i in x: # start a loop over the list
y = i//2 # take the exact/inexact result of dividing i by two
if ((y + 1) == i): # Applies a conditional IF operation

count = count + 1 # IF condition is True, update by one count
else:

count2 = count2 + 1 # IF condition is False, update by one count2

s1 = 'In the list, {0} elements (j) satisfies that '.format(count)

s3 = 'In the list, {0} elements (j) DO NOT satisfy that
'.format(count2)

s2 = 'j//2 + 1 == j'

Chapter 3, IPython session 5

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



73 Chapter 3: Some applications involving Whole Numbers

print(s3 + s2) ; print(s1 + s2)

In [4]:

Take a moment to review this program, paying particular attention to the if--else construc-
tion inside the for loop. This construction can go anywhere in he program where we need it. Now
run the program by executing the line of code on input cell In [4]: below:

In [4]: %run my_program.py
In the list, 6 elements (j) DO NOT satisfy that j//2 + 1 == j
In the list, 2 elements (j) satisfies that j//2 + 1 == j

In [5]:

Chapter 3, IPython session 6

Could you evaluate the validity of the printed output?. Could you see which added lines of
codes are unnecessary and why? Taking out (deleting or commenting) unnecessary lines of
codes, could you see which lines of codes should be modified and how to get the same printed
output on the computer screen?

3.3.3 The if--elif--else statement

As the name of the Python if--elif--else statement might have suggested to you, it
is a conditional selection of options based on several possible states (not just two as in the
previous case). For instance, think about the three states of the traffic light when driving:
if you find it in red, you do something; if you find it in yellow, you do something else; and
else you continue. Thus, the if--elif--else statement helps to put together an action
plan for several possible scenarios, checking them one by one and stopping the checking once a
condition is fullfilled and the action plan for that scenario is executed. The if--elif--else
statement has the following general construction:

if (condition 1):
Instructions executed IF (condition 1) is True

elif (condition 2):
Instructions executed IF (condition 1) is False
and (condition 2) is True

elif (condition 3):

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



74 Chapter 3: Some applications involving Whole Numbers

Instructions executed IF (condition 2) is False
and (condition 3) is True

...
...

...
elif (condition n):

Instructions executed IF (condition n− 1) is False
and (condition n) is True

else:
Instructions executed IF (conditions 1 to n) are False

Let’s note that the if--elif--else construction is not equivalent to a set of simple if
statement coming one after the other. In the former case, the checking for options to be
executed stops once a condition happen to be True, no matter the state of the remaining options.
In the later case, each condition is verified and anyone resulting to be True is executed.

To illustrate the use of the if--elif--else statement, let’s modify our previous pro-
gram, on page 71. For that, you want to open the file my_program.py using (in our
case) the gedit text editor, as we did before from the system shell o terminal by execut-
ing:

$ gedit my_program.py

Chapter 3, System shell command 5

Then modify the file to read exactly as shown in Figure 3.3 (on page 75) save it and quit
from the gedit text editor (in case you have trouble editing the file, go to the directory
named chapter_03 of the programs that comes with this book, that you can download from
the respective companion web site mentioned in the Preface. In there, find the file named
chap03_prog_03_ifelifelse.py and make a copy of it via executing the command cp
chap03_prog_03_ifelifelse.py my_program.py in the system shell or terminal.
Alternatively, you can continue with what follows replacing my_program.py by chap03_
prog_03_ifelifelse.py).

Once you are done with the changes in the file and saved it, let’s see the content of the file in an
IPython console by executing the line of code on input cell In [2]: below:

In [2]: more my_program.py

Chapter 3, IPython session 7

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



75 Chapter 3: Some applications involving Whole Numbers

Figure 3.3: An example using the if--elif--else construction

Executing that line of code will show you on the computer screen the content of the file my_
program.py:

x = [ 0, 3, 1, 2, 4, 6, 5, 0] # Defines a list holding a few numbers
count = 0 # Initialize a counter to hold the value zero
for i in x: # start a loop over the list

y = i//2 # take the exact/inexact result of dividing i by two
if ((y + 1) == i): # Applies a conditional IF operation

count = count + 1 # IF condition is True, update by one count
count2 = len(x) - count # Can you see why?
s1 = 'In the list, {0} elements (j) '.format(count)
s2 = 'j//2 + 1 == j'
if count == count2:

s3 = 'satisfies and do not satisfy that '
print(s1 + s3 + s2)

elif count > count2:
s3='In the list, more elements (j) satisfy that '.format(count2)
print(s3 + s2)

else:

Chapter 3, IPython session 8

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



76 Chapter 3: Some applications involving Whole Numbers

s3 = 'In the list, fewer elements (j) satisfy that '.format(count2)
print(s3 + s2)

In [3]:

Compare this program with the previous one, on page 71. Could you answer the quetions posed
at the end of the previous section, on page 73.? Pay particular attention to the if--elif--else
construction. This construction can go anywhere in he program where we need it. Now run
the program by executing the line of code on input cell In [3]: below:

In [3]: %run my_program.py
In the list, fewer elements (j) satisfy that j//2 + 1 == j

In [4]:

Chapter 3, IPython session 9

Take a moment to evaluate the validity of the printed output.

3.4 The Python and (&) and or (|) operators
As we have seen, to execute operations with the while loop and any of the if statements it
is required to pass a boolean (True or False) condition to the Python interpreter. In our
examples we have used simple (strightforward) conditions whose states of True or False can be
easily verified. But from experience we know that True and False states could be made from
complex combinations of the truthfulness condition of other (allow us to called) micro-states
or sub-states.

Accordingly, to wider the possibilities to reproduce such conditions, Python includes (among
others) the operators and (&) and or (|) that allows the combination of boolean expressions in
order to make complex branching of the flow of a program via True or False boolean conditions
(in case you are wondering about the bar symbol (|), it is the one that appears with the back
slash (\) symbol in an standard English keyboard).

The general form to operate with these operators is like

((lhs condition) operator (rhs condition))

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



77 Chapter 3: Some applications involving Whole Numbers

The parenthesis are not mandatory, but we recommend using them to make clear what is
being composed. The external parenthesis will contain the result of combining the conditions
contained in each internal parenthesis via the applied (&/|) operator.
A true table for these operators helps deciding how to build our branching conditions. In
Table 3.1 it is shown the true table for the operator and (&).

and (&) True False
True True False
False False False

Table 3.1: The operator and (&) true table

One way to read the table is assigning any of the states (of True or False) shown in the left most
column (under and (&)) to the lhs condition, and similarly assigning any of the states (of
True or False) following horizontally the and (&) row to the rhs condition. The result
of compounding them via the AND operator is the value of the intersecting cell. For instance
having lhs condition = True and the rhs condition = False, the intercepting cell
reads False (you read it: True AND False results in False). In the following IPython ses-
sion which shows these operations using both representations of the operator:

In [5]: True and True
Out[5]: True

In [6]: True & True
Out[6]: True

In [7]: True and False
Out[7]: False

In [8]: True & False
Out[8]: False

In [9]: False and True
Out[9]: False

In [10]: False & True
Out[10]: False

In [11]: False and False
Out[11]: False

Chapter 3, IPython session 10

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



78 Chapter 3: Some applications involving Whole Numbers

In [12]: False & False
Out[12]: False

In [13]:

The or (|) operator is shown in Table 3.2. We let you as an right away exercise to write its
operations in an IPython session (recall that the bar symbol (|) appears with the back slash
(\) symbol in an standard English keyboard).

or (|) True False
True True True
False True False

Table 3.2: The operator or (|) true table

In the remaining sections of this chapters and in the following one you’ll find examples using
these operators.

3.5 Statistical measures
Let’s continue our fun experience (or workout exercises, if you like) in writing Python programs
(scripts) by making the task of a few statistical measures automatic. Recall that whenever you
see the word statistic, generally it has implicit the use of a pretty good amount of numbers (a
lot of them) for the statistical properties that we are computing to make sense. Doing such
computations by pencil and paper are a demanding (usually boring) task. Since computers
likes to crunch numbers, not matter in which situation, many has written statistical software
for computing statistical measures for us.

In this section we will have some fun writing our own pieces of Python code to do a few of such
statistical computations. This way, while practicing the Python notions we have covered so
far, we’ll be getting used to necessary background to write any piece of statistical computation
that one might need but is unavailable in our favorite statistical software. Additionally, we will
introduce a few extra Python functionality like generating whole numbers randomly (actually
will be generating pseudo random whole numbers, but eventually we’ll use the phrase a random
whole number, or its plural, for short).

Thinking carefully about the logic of the few programs (and about the problems that they were
written for) covered in this book will lead you to improve your computational thinking skills,
that for sure will help you to even discover alternatives ways to implement the codes shown
here. More importantly, such carefully thinking will engage yourself on effective learning, which
will lead to the enrichment of your independent thinking performance.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



79 Chapter 3: Some applications involving Whole Numbers

3.5.1 Computing means or averages using Python

The mean (also known as arithmetic mean or average) is a statistical measure of the central
tendency of a set of values with no strange behavior. It is computed as the quotient of the
result of adding the given set of values and the number of the given set of values. The set of
values could represent the ages of the students taking this programming class (or, to make it a
bit larger, the ages of everyone taking a Prealgebra class in the world).

Accordingly, a detailed recipe (algorithm) to compute the mean of a set of values could involve
the following steps:

1. Initialize a variable (i.e. TheValues) holding the set of values.
2. Initialize to zero a variable (i.e. NumberOfValues) that will be used to count how many

elements are in the set of values.
3. Initialize to zero a variable (i.e. TheAdding) that will hold the adding of the set of values.
4. Read an element of the set of values.
5. Update the counter of values by one.
6. Add the read value to the variable TheAdding holding the addition of the values.
7. Continue by repeating steps 4--7, until reaching the end of the given set of values.
8. Compute the mean, assigning it to a variable (i.e. TheMean = TheAdding/NumberOfV alues).
9. Print the result to the screen.

So, to write our Python program we need to collect the values and store them in a meaningful
way in the computer memory, so we can have easy access to them. We also need to device a
procedure to add them and count how many of them are. Let’s point out that in this book
we are going to stress the use of basic programming structures like if statements and for and
while loops. The main reason for this is that they are common to any programming language
and you need to know how to use them properly not to abuse instructions to break or exit
them abruptly. As you gain experience with Python you will learn many alternatives to write
programs in fewer lines of code that perhaps are more efficient. Since not every programming
has available such alternatives you need to become acquainted on how the afore mentioned
basic programming structures works.

Continuing writing our program, let’s give a quick refreshment of the tools we have at hand to
approach our task. We know that Python objects can be assigned to variables. This objects
(that we know so far) could be numbers or a collection of them put together in a list. We
also now that we can do recursive or repetitive computations via the for loop and the while
loop. Additionally, we have learned in the previous sections of this chapter, that we could also
make use of conditional execution of the flow of a program via a set of if statements, in case
we need them. As anticipated by the presented algorithm, no if statement is required to make
the computation of the average of a set of values.

Figure 3.4 (on page 80) shows a Python program that you can follow by hand (pencil and
paper) computation to fully understand its flow. This program is available in the directory
named chapter_03 of the programs that comes with this book, that you can download

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



80 Chapter 3: Some applications involving Whole Numbers

from the respective companion web site mentioned in the Preface. In there, find the file named
chap03_prog_04_mean.py and make a copy of it via executing the command cp chap03_
prog_04_mean.py my_program.py in the system shell or terminal. Alternatively, you can
continue with what follows replacing my_program.py by chap03_prog_04_mean.py.

Figure 3.4: Program that computes the mean of a set of values

We will study this code with some level of details, so you can follow the flow of other codes in
this chapter the same way we will be doing here.

Thus, following the flow of this code starts with the execution of line 2, initializing the variable
TheValues to hold the set of values to which we want to compute its average (which are
contained or grouped in a Python list). The flow of the code continues executing lines of code
2 and 3, initializing to zero two variables that we are going to use to hold partial results (after
exiting the for loop, the variable NumberOfValues will hold the total number of values that are
being averaged while the variable TheAdding will hold the sum of the set of values). Then,
the flow of the codes enters the for loop (line of code 7), starting by assigning to the variable
newValue the first element in the the list (that is, number 17). Entering the body of the loop,
the variable NumberOfValues is increased by one (it will get the value 1 = 0 + 1, while the
variable TheAdding takes the value 17 = 0 + 17). Then, the flow of the code goes back to the
line of code 7, and the for loop checks if there are more values to process, finding that there are
and assign the second value in the list (that is, number 14) to the variable newValue. Entering
the body of the loop, the variable NumberOfValues is increased by one (it will get the value
2 = 1 + 1, while the variable TheAdding takes the value 31 = 17 + 14). Then, the flow of the
code goes back to the line of code 7, and the for loop checks if there are more values to process
finding that there are and assign the third value in the list (that is, number 14) to the variable
newValue. And the process continues, until it reaches the last value in the list and the for loop

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



81 Chapter 3: Some applications involving Whole Numbers

exit (continuing the execution of the code by hand, you’ll get the values that each one of the
variables of the code should have after exiting the for loop. Could you think about how you’ll
check those values with the code?).

After exiting the for loop, the flow of the code encounters the if--else statement defined on lines
of code 11--16 (is it necessary?). The if part of the statement verifies whether the division of
the value hold by the variable TheAdding by the value hold by the variable NumberOfValues
has remainder of zero (meaning that the result of the division is a whole number, the ones we
have been studying so far). In case that happen, the mean is computed via the Python double
slash division operator and printed to the screen, otherwise the else part of the statement is
executed printing to the screen a (real) number assigned to the variable TheMean, which is
correct but that we have not studied yet.

Now, let’s execute this code on the computer, via the IPython console. Before, we can see the
content of the file in an IPython console by executing the line of code on input cell In [2]:
below:

In [2]: more my_program.py

Chapter 3, IPython session 11

Executing that line of code will show you on the computer screen the content of the file my_
program.py:

TheValues = [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

NumberOfValues = 0
TheAdding = 0

for newValue in TheValues:
NumberOfValues = NumberOfValues + 1
TheAdding = TheAdding + newValue

if (TheAdding % NumberOfValues) == 0:
TheMean = TheAdding//NumberOfValues
print('The mean of the values is the whole number =

{0}'.format(TheMean))
else:

TheMean = TheAdding/NumberOfValues
print('The mean of the values IS NOT a whole number =

Chapter 3, IPython session 12

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



82 Chapter 3: Some applications involving Whole Numbers

{0}'.format(TheMean))

Once again, for the few values given in this exercises, you can follow these steps by hand
computation, as we show above, using pencil and paper (and we encourage you to do so) to get
a better idea of how the program works. Think, now, on doing it by hand computation over
larger set of values (like computing the average age of all the students at your grade in your
institution).

Notice the if--else construction we are using to display on the computer screen the obtained
result. This program is valid for any set of numbers. Since we are studying whole numbers, we
are assuming that the given set of values are all greater or equal than zero. Later in the book
we will be looking at ways to verify that input objects to a program takes the right value.

Now run the program by executing the line of code on input cell In [3]: below:

In [3]: %run my_program.py
The mean of the values is the whole number = 15

In [4]:

Chapter 3, IPython session 13

We left you as an exercise to simplify a bit the number of lines in this code. How could you
modify this program to print the mean of the given set of values regardless it is a whole number
or not.?

Take a moment to evaluate the validity of the printed output. How do we know the program
is given the right answer?

One way for doing so is to try several set of of input values for which we already know the
answer that the program must reproduce. That give us a high level of confidence that the logic
of the program is correct. Another issue to consider is the efficiency of the code, but that is
beyond the scope of this book.

Once we have a working code, eventually we can think on making the code simpler. Sometimes,
fewer lines of code helps to find possible bugs. It turns out that this code can be simplified
using the Python built in function (or method) sum as follows:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



83 Chapter 3: Some applications involving Whole Numbers

In [4]: TheMean = sum(TheValues)/len(TheValues)

In [5]: print('The mean of the values = {0}'.format(TheMean))
The mean of the values = 15.0

In [6]:

Chapter 3, IPython session 14

As you could see, this simplification gives you a non whole number answer, but from the use
of your calculator we know you are able to understand the meaning of the extra ’.0’.

An alternative way of doing it is as follows:

In [6]: print('The mean of the values = {0}'.format(
...: sum(TheValues)/len(TheValues)))

The mean of the values = 15.0

In [7]:

Chapter 3, IPython session 15

Let’s mention that the Anaconda Python distribution includes the NumPy and SciPy modules
for performing this and many other statistical computations efficiently, for small and big data
sets. We will mention a few extra words about them, later in the chapter, in the advance
(optional) section, starting on page 96. It is advisable to keep in mind that the mean of any
set of values can always be computed, but not always it will have a meaningful meaning.

3.5.2 Computing the median of a set of values using Python

The median is another (more robust) statistical measure of the central tendency of a set of
values (which can even have strange behavior). It is computed by ordering (from least to
greatest) the set of values and taking (if the set of values is odd) the middle number or the
average of the two middle numbers (if the the set of values is even). You can see that the
median separates the set of ordered values into two equal parts from both ends of the set.

As you can anticipate, this is a bit complicated than computing averages. A roughly recipe
(algorithm) to compute the median of a set of values could involve the following steps:

1. Initialize a variable (i.e. TheValues) holding the set of values.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



84 Chapter 3: Some applications involving Whole Numbers

2. Sort the set of values kept in the variable (i.e. TheValues) and assign it to a variable
(that could be TheValues to save computer memory).

3. Count how many values are in the list and assign it to a variable (i.e. NumberOfValues).
4. If the number of values is odd, take the middle element of the set of ordered values as the

median of the set values. Else, if the number of values is even, take the average of the
two middle elements in the set of ordered values as the median of the set values.

5. Print the result to the screen.

Comparing this recipe with the one (given of page 79) we implemented in the previous section
to compute averages, the new (and hard) part is sorting efficiently the set of values (step 2).
You’ll find a huge amount of discussions in this subject out there, on the Internet. Accordingly,
we are not going to our own sorting program in this book (but see Problem 3.2, on page 139).
Instead, we will make use the fact that we need to overcome that requirement to introduce (or
use) a function readily available to sort a set of values in a Python list object.

Let’s start by typing in an IPython console the list of values of our previous program (you
can take it directly from the file chap03_prog_04_mean.py, referred to in the previous
section).

In [7]: TheValues = [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

In [8]:

Chapter 3, IPython session 16

Make a copy of it via the built in copy method of a Python list, and ensure yourself it is really
a copy:

In [9]: TheValuesBackUp
Out[9]: [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

In [10]: TheValuesBackUp == TheValues
Out[10]: True

In [11]:

Chapter 3, IPython session 17

Now let’s sort the values using the sort built in method of a Python list :

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



85 Chapter 3: Some applications involving Whole Numbers

In [11]: TheValues.sort()

In [12]: TheValues
Out[12]: [13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 18]

In [13]: TheValuesBackUp
Out[13]: [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

In [14]: TheValuesBackUp == TheValues
Out[14]: False

In [15]:

Chapter 3, IPython session 18

As you can see, the built in sort method, order the values in the list from smaller to larger
values, and assign or place the result in the same variable (this is way we made a copy of the
initial set of values, in case they are required for extra computations in that initial state).

Another aspect of our recipe to compute the median is to count (step 3) how many values are
in the given set. From the previous section, you already know how to do that via a for loop
(can you?). But (from that section) we also know a better way which involves the using of the
built in Python len function:

In [15]: NumberOfValues = len(TheValues)

In [16]: NumberOfValues
Out[16]: 11

In [17]:

Chapter 3, IPython session 19

Now comes the part (step 4) of deciding how to compute the median regarding the number of
values is odd or even. For our exercise, we need to use the recipe for an odd total number of
values. That is, we need to take the middle element in the sorted list of values. Thinking a
bit about it, we can locate the middle element in any set of values (not only sorted ones) by
taking the result of dividing the total number of elements in the list by two and adding to it the
remainder (that will be one). In our example, the total number of elements is 11. Dividing it
by two gives 5, with a remainder of one, locating then the middle value at the position 6 = 5+1

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



86 Chapter 3: Some applications involving Whole Numbers

(in our sorted list of values it is one of the numbers 15 contained in the list, specifically the one
occupying the sixth place counted from either end of the list). Recalling that in a Python list
the elements are counted from left to right starting from zero, this means that the position sixth
in the list corresponds to the fifth element (counting from left to right we have the elements
0, 1, 2, 3, 4, 5, and the others). Thus we see that it corresponds to the result of our division
without adding the remainder. Let’s see this in the IPython session (remember that to take
the element n in a list we use the construction nameOflist[n]):

In [17]: temp = NumberOfValues//2

In [18]: temp
Out[18]: 5

In [19]: TheMedian = TheValues[ temp ]

In [20]: TheMedian
Out[20]: 15

In [21]:

Chapter 3, IPython session 20

Let’s see now the situation on which the number of values is even. For that we will delete
one element from our toy example list. For that we will use the pop built in method for any
Python list object that takes as argument the position of the element we want to extract. In
the example we’ll delete the element at position 9th):

In [21]: TheValues
Out[21]: [13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 18]

In [22]: TheValues.pop(9) # delete he 9th element in the list
Out[22]: 17

In [23]: TheValues
Out[23]: [13, 13, 14, 14, 14, 15, 15, 16, 16, 18]

In [24]: NumberOfValues = len(TheValues)

In [25]: NumberOfValues

Chapter 3, IPython session 21

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



87 Chapter 3: Some applications involving Whole Numbers

Out[25]: 10

In [26]:

Notice that the pop built in method returns the deleted value (see output cell Out[22]:)
which can be assigned to a variable if necessary for additional computational tasks. Output
cell Out[23]: shows that the value 17 is no longer in the TheValues list, and it has now a
NumberOfValues of 10 (which, as you know, is an even number). In this case we need to take
the average of the two middle numbers in the list. Output Out[23]: shows that they are the
last 14 value and the first 15 value (counted from left to right), which corresponds to the 4th
and 5th positions in the list. Thinking a bit how to get them, we see that as we did in the
previous computation of the mean, the 5th position is obtained by taking the result of dividing
the total number in the list by two, and the other middle value is obtained by moving backward
one place from this position. That is, given that we are assigning the furthest position of the
middle element in the variable temp, the position of the first middle element is obtained by
subtracting one from the furthest position (i.e. temp−1). This is implemented in the following
IPython cells:

In [26]: TheValues[ temp ]
Out[26]: 15

In [27]: TheValues[ temp - 1 ]
Out[27]: 14

In [28]: TheMedian = (TheValues[ temp - 1 ] + TheValues[ temp ])/2

In [29]: TheMedian
Out[29]: 14.5

In [30]:

Chapter 3, IPython session 22

Well, the result for the median (on output cell Out[29]:) is not a whole number (generally
the median, as well as the mean, will not be a whole number), but we are sure you know how
to handle it.

Hokey dokey!, you did a great job getting here. The next step is to make automatic the shown
steps, so we do not depend on visual inspection to decide how to proceed as we did here.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



88 Chapter 3: Some applications involving Whole Numbers

Perhaps you have already anticipated that to implement these operations an if--else statement
will do, using as the conditional control variable the Python mod or remainder (%) operator.
In fact, this is the case, but instead we have implemented an if--elif--else statement to handle
a couple of particular situations we have not discussed here (could you explain them?).

The full listing of the program is shown in Figure 3.5 (on page 88). Additionally, this program is
available in the directory named chapter_03 of the programs that comes with this book, that
you can download from the respective companion web site mentioned in the Preface. In there,
find the file named chap03_prog_05_median.py which you can execute in the IPython
console using the magic %run command as we have done before:

In [30]: %run chap03_prog_05_median.py
The median of the set of values is: 15

In [31]:

Chapter 3, IPython session 23

Figure 3.5: Program that computes the median of a set of values

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



89 Chapter 3: Some applications involving Whole Numbers

3.5.3 Computing the mode of a set of values using Python

The mode is a statistical measure that counts the value that occurs most often in a set of values.
That is, to find the mode of a set of values, we need to count the number of repetitions of each
value. The value with the most repetitions is the mode. In case every value appear only once
(i. e. no value is repeated), we say that the set of values has no mode. If there are two or more
values having the most repetitions, the set of values is said to be multi mode or that its mode
is not unique.

Accordingly, a roughly recipe (algorithm) to compute the mode of a set of values could be
stated in the following terms:

1. Initialize a variable (i.e. TheValues) holding the set of values.
2. Pass through each value and count how many times each value is repeated in the set of

values.
3. Take the value (or the values) with the most repetitions in the set, and assign it to the

variable holding the mode.
4. Print the result to the screen.

This recipe does not look too complicated to implement, but don’t be fooled by its looking
simplicity. Actually the new (and hard) part is finding an efficient way to go through the
values and counts the repetition of each one (step 2). We will happy to write a program that
computes rightly the mode of a set of values. It will be a homework for you to check its efficiency,
later on, when you get more experience with Python. We will make a detailed discussion of
our approach as it gives a lot of practice applying what we have learned so far, in particular
looping, which is at the heart of repetitive computing and not always you can avoid them.

Let’s start by typing in an IPython console the list of values of our previous program (you
can take it directly from the file chap03_prog_05_median.py, referred to in the previous
section).

In [1]: TheValues = [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

In [2]:

Chapter 3, IPython session 24

A quick inspection of the set of values shows that the set has the value 14 as its mode (because
it is the value repeated the most in the set).

We now need to go through the elements in the list and count how many times each one is
repeated.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



90 Chapter 3: Some applications involving Whole Numbers

Our intuitive approach to do this (at a first thought) is to go through each value in the list
an write in a different list (i.e. holdvals) how many times that value appear in the set of
values. Two things to notice in this approach: first, that the counting will be written in
the new list having the same position that each one has in the list holding the set of values.
Second, the procedure is repeated with each element in the list, regardless if it has been already
counted.

In [2]: holdvals = []

In [3]: for j in TheValues:
...: temp = 0
...: for k in TheValues: # count how many times value in j is repeated
...: if j == k:
...: temp = temp + 1
...: holdvals.append(temp)
...:

In [4]: print(holdvals)
[1, 3, 3, 2, 2, 2, 3, 2, 2, 1, 2]

In [5]:

Chapter 3, IPython session 25

As you must convince yourself, the first entry (1) in the list holdvals corresponds to the count
of the first element (number 17) in the list TheValues. The second entry (3) in the list holdvals
corresponds to the count of the second element (number 14) in the list TheValues, and so forth.

Let’s explain a bit more this piece of code by following its flow. On input cell In [2]: an
empty list is created. We will use it to keep the repetition of each value. Then, on input cell In
[3]: a nested for loop (two of them) is used to go through each value in the list (the external
loop) and compare it with each one (including itself) of the values in the list (this is done via
the internal for loop in combination with the if statement. We keep track of how many times
each value is repeated with the temp variable, which is first initialized to zero after one value is
read and assigned to the variable j in the external for loop, and then it is increased by 1 in the
body of the if statement. After exiting the internal for loop, the assigned value of this variable
temp is added to the list defined on input cell In [2]:. You can see that the added score will
be at the position of the current value in the variable i.

Our next step is to find the most repeated value in the set. For that we need to find the largest
(maximum) score keep in the list (i. e. holdvals) we just filled out holding how many times
each value is repeated in the data set. We take advantage of this fact to introduce the built-in
Python max function (but check Problem 3.1, on page 139). As usual, you can look at some

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



91 Chapter 3: Some applications involving Whole Numbers

documentation of this function (max ) directly from an IPython cell by executing the command
max? or max??. Accordingly, the next line of code in our program read as:

In [5]: themax = max( holdvals )

In [6]: themax
Out[6]: 3

In [7]:

Chapter 3, IPython session 26

Inspecting the values in the list obtained as output of the input cell In [4]:, you can convince
yourself that the output cell Out[6]: is, indeed, the maximum value assigned to the variable
themax via the max function as defined in the input cell In [6]:.

Now, continuing with our program, we need to find out whether our set of values has only one
mode or it is multi-mode (the mode is not unique). One way to find out that is to go through
the values kept in the list holdvals and check (using the the given set of values) if the maximum
count correspond to one or more than one value in the set.

In order to do this, we first extract the repeated values corresponding to the maximum score
(we do it regardless it is repeated or not) and set them in a new list (i. e. repeated). The
following lines of code shows a way of doing this:

In [7]: MostRepeatedVals = []

In [8]: for k in range( len(holdvals) ):
...: if holdvals[k] == themax:
...: MostRepeatedVals.append( TheValues[k] )
...:

In [9]: print('The most repeated values are: ', MostRepeatedVals)
The most repeated values are: [14, 14, 14]

In [10]:

Chapter 3, IPython session 27

As you can see, in this toy exercise the variable MostRepeatedVals holds the value(s) (only one

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



92 Chapter 3: Some applications involving Whole Numbers

type in this example) most repeated in the data set. To consider the possibility that the mode
is not unique, we need to verify that the values in the list MostRepeatedVals are or not unique.
This is done in the following lines of code (see Problem 3.3, on page 140):

In [10]: for k in MostRepeatedVals:
...: MultiMode = 0
...: for j in MostRepeatedVals:
...: if j != k:
...: MultiMode = MultiMode + 1
...:

In [11]:

Chapter 3, IPython session 28

As mentioned, these lines of code are written to check if our data set has or not a unique mode.
In case the mode is not unique, the variable MultiMode will be assigned a value greater that
one. A special case is when the data set does not have a mode (the variable MultiMode takes
assigned the value of the length of the data set). This variable then help us to write the final
part of our code that prints on the screen the mode of the data set according to the value taken
by this variable MultiMode:

if MultiMode == 0:
print('The mode of the data set is unique:')
print(' Value {0} is repeated {1} times.'

.format(MostRepeatedVals[0], len(MostRepeatedVals) ))
elif MultiMode == (len(MostRepeatedVals)-1):
print('The data set has no mode')

else:
print('The mode of the data set is not unique:')
different = MostRepeatedVals.copy()
pairs = []
while different != []:

i=0
l = different[0]
temp = []
for k in different:
if k != l:

temp = temp + [k]
else:

i = i + 1
pairs = pairs + [[l, i]]

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



93 Chapter 3: Some applications involving Whole Numbers

different = temp
for i in pairs:

print(' Value {0} is repeated {1} time(s).'.format(i[0], i[1]))

The structure of this if--elif--else statement should be clear to you from what we have previously
commented. The hard part to understand if the body of the else part. What this part of the
code does is to take apart each mode of the data set and prints it to the screen. Notice the
test condition for the while loop. This gives you an idea that such test condition could be
very complex constructions having, of course, as output a True/False boolean condition. We
encourage you to spend some time following the flow of this piece of code using pencil and
paper to fully understand what it does and, perhaps, devise ways to improve it.

The full listing of the program is shown in Figure 3.6 (on page 95). Additionally, this program
is available in the directory named chapter_03 of the programs that comes with this book,
that you can download from the respective companion web site mentioned in the Preface. In
there, find the file named chap03_prog_06_mode.py which you can execute in the IPython
console using the magic %run command as we have done before:

In [1]: %run chap03_prog_06_mode.py
The mode of the data set is not unique:

Value 14 is repeated 3 time(s).
Value 16 is repeated 3 time(s).

In [2]:

Chapter 3, IPython session 29

This program involves a great level of complexity in the logic and the flow of the code instruc-
tions to accomplish the task of finding the mode of a set of values. It also offer an excellent
option to practice the testing of programs. For that you need to try many input data set for
which you know the answer spamming several cases: the data set should include set of values
having a mode, no mode, and non unique mode. A good source of testing data could be the
workout exercises in your Prealgebra course work, including the ones in your textbook. The
examples we have use employs input data consisting of whole numbers. To test the general
validity of the program, you should consider running the program on different set of numbers,
including negative integers and also you can try data set containing real numbers (if you are
already familiar with them). Trying a mixture set of values will help to advice the potential user
of the program about conditions on which it will fail and also it helps to see what improvement
requires the program to be used in general.

To fully evaluate that your program is given the right answer, Python offer ways to perform

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



94 Chapter 3: Some applications involving Whole Numbers

the computation of the mode of a data set via a mode function that comes with its statistical
package, as we will show in section 3.5.4, starting on page 96. In the next section we will cover
how to generate some testing data pseudo-randomly (meaning no truly random).

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



95 Chapter 3: Some applications involving Whole Numbers

Figure 3.6: Program that computes the mode of a set of values

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



96 Chapter 3: Some applications involving Whole Numbers

3.5.4 Computing statistical measures via Python statistical modules

We have written programs to compute the mean, median, and mode of a set of values. Writing
these functions was a good exercise to apply the basic Python programming instructions and
to give it a first try to our computational thinking skills.

As you might have guessed already, Python comes with some modules that already contains
functions or methods to compute the mentioned quantities. You can use these functions to
check if the ones written by us is given correct answer.

Let’s see how it works via the following IPython session:

In [1]: import statistics as stat

In [2]: TheValues = [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

In [3]: stat.mean( TheValues )
Out[3]: 15

In [4]: stat.median( TheValues )
Out[4]: 15

In [5]: stat.mode( TheValues )
Out[5]: 14

In [6]:

Chapter 3, IPython session 30

On input cell In [1]: we make available to the current IPython session the Python statistics
module with the pseudonym given by the name stat (you could use any other valid name if
you wish to). If you want to see the available methods in the statistical module, in an IPython
input cell type stat. and hit the computer TAB-key. A small window will appear on the
IPython session which you can browse using the arrow keys on the keyboard. Alternatively,
you could execute the command dir(stat). The full set of methods will be displayed on the
computer screen. In the shown list you will find mean, median, and mode methods available
in the module. To read some help about using, for instance, the mean method, you could
execute in an IPython input cell stat.mean? or stat.mean??. You can do similarly with any
other method available in the module.

Thus, on input cells In [3]:--In [6]: it is done the computation of the the mean, median,
and mode of the set of values given on input cell In [2]:. You could check that the answer
on each output cell corresponds to the ones obtained by our programs.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



97 Chapter 3: Some applications involving Whole Numbers

Now, see what happen if you give to the mode method a set of values having a non-unique
mode:

In [6]: TheValues = [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13, 16]

In [7]: stat.mode( TheValues )
---------------------------------------------------------------------------
StatisticsError Traceback (most recent call last)
<ipython-input-7-3ba4cbb69130> in <module>()
----> 1 stat.mode( TheValues )

~/myProg/Anaconda35001/lib/python3.6/statistics.py in mode(data)
505 elif table:
506 raise StatisticsError(

--> 507 'no unique mode; found %d equally common values' %
len(table)
508 )
509 else:

StatisticsError: no unique mode; found 2 equally common values

In [8]:

Chapter 3, IPython session 31

You only get an StatisticsError message indicating that the data set has no unique mode and
that 2 equally common values were found. Here is then an example for writing our own function.

An alternative way to compute these statistical quantities is as follows:

In [9]: from scipy import stats

In [10]: stats.mode(TheValues)
Out[10]: ModeResult(mode=array([14]), count=array([3]))

In [11]:

Chapter 3, IPython session 32

This time, the mod method in this SciPy module returns the smallest most common value of

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



98 Chapter 3: Some applications involving Whole Numbers

the set of values. There might be situations on which that will be fine. Nevertheless, it is better
to show the full set of most common values as our program does. The message of these two
output is the same: let’s keep on programming!!.

3.6 Generating pseudo-random data sets for program
validation and verification

We have been stressing the important fact of program validation and verification, under the
premise that a program is correct if it produces correct results. And it is always true that we
can not verify the validity of a program for all possible input data set. Thus, to be confident
that our program is working correctly, it is necessary that we run it on a variety input data set.
The cases we have been studying in this section (mean, median, and mode) has the advantage
that you can find many exercises with the answer given in your Prealgebra course work and
in the respective textbook. In case you find a conflicting result a few of the answers that you
have, it is possible that such answer might be incorrect, but it can also be a case on which your
program fails.

Accordingly, it is advisable to always verify the validity of your program in as many as possible
(perhaps controlled) input data sets. This testing will help strengthening your programming
thinking skills.

Python offers a well deal of options to generate controlled data set via pseudo random number
generation. They are numbers that looks random but, since (via the setting the seed to generate
them) they can be reproduced on another execution of the program, such numbers are not truly
random.

One of the possibilities to generate sequences of pseudo random number is via the Python
module random. It can be used to generate integers and non-integers pseudo random number
(to see the available methods via the random module type rnd. and hit the computer TAB-
key).

We will be using the Python module random here to produce sequences of (pseudo) random
whole numbers (but you are encourage to explore the other possibilities). On an IPython
console try the following:

In [1]: import random as rnd

In [2]: rnd.randint(0,10)
Out[2]: 1

In [3]: rnd.randint(0,10)
Out[3]: 7

Chapter 3, IPython session 33

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



99 Chapter 3: Some applications involving Whole Numbers

In [4]:

On input cell In [1]: the functionality of the Python module random is loaded into the
IPython session and assigned to it the name rnd (you could use any other name). The method
that will generate whole numbers is called randint.. One way of using this method is shown on
input cell In [2]: and In [3]: (you will get different numbers every time you run these
lines of code on your IPython session). In general, randint will generate integers in any interval
provided by the user. An alternative way of using this method is as follows:

In [4]: inival = 0

In [5]: endval = 10

In [6]: HowManyNumbers = 10

In [7]: myrandomlist = []

In [8]: for i in range(HowManyNumbers):
...: myrandomlist.append( rnd.randint(inival, endval) )
...:

In [9]: myrandomlist
Out[9]: [3, 10, 4, 8, 3, 0, 8, 7, 10, 4]

In [10]:

Chapter 3, IPython session 34

In here we set the interval on which we want the pseudo random number via the variables
inival and endval. We then set the numbers of random numbers to be generated in the vari-
able HowManyNumbers, and then the numbers are generated and assigned to the Python list
myrandomlist. Again, executing this code will generate a different sequence of pseudo random
numbers in your computer. And every time you execute it, a different set of numbers will be
generated (but always in the specified range).

As you could have anticipated, now you can generate any sequence of pseudo random numbers
to feed any of the programs we have written so far. The problem with doing it this way is
reproducibility, meaning that to test any of the codes you want to feed the same set of values
to any other program you have to test your own one and see that both programs gives the same

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



100 Chapter 3: Some applications involving Whole Numbers

answer.

One way of using the same sequence of pseudo random numbers to feed any program is by
using the method seed available in the random module. It is used in the following way:

In [10]: myrandomlist = []

In [11]: rnd.seed( 324567 )

In [12]: for i in range(HowManyNumbers):
...: myrandomlist.append( rnd.randint(inival, endval) )
...:

In [13]: myrandomlist
Out[13]: [4, 10, 3, 5, 4, 0, 1, 3, 9, 7]

In [14]:

Chapter 3, IPython session 35

This means that to get the same sequence of pseudo random numbers as the ones shown on
output cell Out[13]:, you need to set the seed method having as argument the number 324567
(as shown on input cell In [11]:) before starting the generations of the numbers. Using this
seed you can ensure the same input to your programs. For any other reproducible sequence
just use another argument in the seed method.

Let’s finish his section by pointing out another method available in the random module. In
case you want to check if the answer obtained from your program is independent of the order in
which the input data is given to the program, you can use the shuffle method to rearrange the
input data set to check for such possibility. This is done in the following way:

In [14]: rnd.shuffle( myrandomlist )

In [15]: myrandomlist
Out[15]: [3, 4, 3, 0, 10, 4, 9, 5, 7, 1]

In [16]:

Chapter 3, IPython session 36

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



101 Chapter 3: Some applications involving Whole Numbers

Notice that the reordered data is set in the same list. Now the variable myrandomlist (as shown
via output cell Out[15]:) has the same set of values arranged differently.

Now you have the necessary tool to verify the validity of your programs by using generated
pseudo random input data set. Keep in mind that every time that you write a test for your
program, it is also a test for whichever method you are using to check the result. More impor-
tant, doing some systematic testing will develop your computational intuition to determine the
validity of your program when no alternative way for checking the results given by the program
is easily available.

3.7 Writing your own Python Functions
So far we have mentioned some built-in Python functions (like max, len, or range) and others
available from other Python modules (like the mode function from the statistics or SciPy
modules). In fact, Python (via the many modules that make its ecosystem) provides you with
a great deal of ready-made functions for performing mathematical operations, text processing,
web development, and so forth. There is practically no-field in which experts have worked on
implementing their best recipes in pieces of Python software that we should reuse.

Surely, you are thinking about how you can start gaining experience in writing your own
functions to make your contributions too, right?

Well, for your surprise, the small programs we have written so far are almost functions!! We
only need to make a few changes to write them as formal Python functions, whose general
format is as follows:

def FunctionName(optional set of comma-separated arguments ):
· · ·
Optional block of properly indented Python instructions
· · ·
return Optional set of Python objects

In this general format, the arguments took by functions are objects they can receive from the
calling program to make operations on them and, then, returning back to the calling program
(usually with a result or new object). For example, the len function can receive as argument a
Python list and returns to the calling program the number of elements in the list. Thus, calling
functions is a way of forking the flow of a program (similar to using a while/for loop or an if
statement).

From this formality, it is clear that functions are essentially a collections of Python instructions
(statements) that, once it is made available to the calling program, using, for example, the
import instruction, as we have done in some of the programs we have written so far, can
be execute at any time in the program. In other words, functions are Python objects that
encapsulates in one place a Python (sub) program.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



102 Chapter 3: Some applications involving Whole Numbers

When defining a function, while the arguments are optional, the instruction def followed
by the function name (which includes the enclosing round parenthesis) is obligatory, as
well as is the colon. The body of the function could be empty, and (if not sending back
anything to the calling program) the return instruction can be omitted (the function ends
after the last indented instruction). It is recommended to always use the return instruction
to end a function.

In Figure 3.7, on page 102, it is shown changed as a function the mean program of Figure 3.4
(page 80). The former, is available in the directory named chapter_03 of the programs
that comes with this book, that you can download from the respective companion web site
mentioned in the Preface. In there, find the file named chap03_prog_07_mean_func.py.

Figure 3.7: Function that returns the mean of a set of values

First, notice the general format of defining a function starting, on line 1, with the def instruc-
tion, followed by the name of the function myfuncMean; the argument TheListOfvalues inside
parenthesis; and the colon. Then, it follows the body of the function, lines 2--22 properly
indented, ending on (the also indented) line 23 with the return instruction, returning (in this
example) two objects, the average of the values TheMean and a message mesg, to the calling
program.

Second, notice the lines of code 2--9. They are comments enclosed within a triple pair of
double quotes (the opening one on line 2 and the closing one on line 9) documenting the

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



103 Chapter 3: Some applications involving Whole Numbers

function. This is a good programming practice. You need to write comments that will help
you, later on, in a few months, or even years, to understand your code (being it a function or
not). This documentation is called a doc string, containing a short description of the purpose of
the function or program and gives a brief explanation of what the different arguments and the
return values are. It also should illustrates how the function is used. This doc string is printed
to the screen when executing FunctionName? (in this case myfuncMean? ) in an IPython
session after loading the function into memory via the import instruction as we will be showing
shortly.

Third, Notice that we have omitted the print instruction from the if statement of the function
(lines of code 17--22). Instead we define a variable holding the message that the print instruction
was sending to the computer screen. This variable can then be printed in the calling program.
Are those line of code necessary?

Now, to load the function in an IPython session, we use the import instruction as we have been
doing previously, when loading functions from some modules:

In [1]: from chap03_prog_07_mean_func import myfuncMean

In [2]: myfuncMean?
Signature: myfuncMean(TheListOfvalues)
Docstring:
This function computes and returns:

1.- The mean of a list holding any set of values.
2.- A message regarding whether the mean is or not a whole number.

To call this function do:
thevalues = [1,2,3,4,5]
meanval, message = myfuncMean( thevalues )

File: ~/The_prealgebra_book/CH03/chap03_prog_07_mean_func.py
Type: function

In [3]:

Chapter 3, IPython session 37

On input cell In [1]: we load the function, while on input cell In [2]: we display the doc
string in case there is any available.

We can now call the function with the provided example and verify it works as advertised:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



104 Chapter 3: Some applications involving Whole Numbers

In [3]: thevalues = [1,2,3,4,5]

In [4]: meanval, message = myfuncMean( thevalues )

In [5]: meanval
Out[5]: 3

In [6]: message
Out[6]: 'The mean of the values is the whole number = 3'

In [7]: myfuncMean( thevalues )
Out[7]: (3, 'The mean of the values is the whole number = 3')

In [8]: Out[7]
Out[8]: (3, 'The mean of the values is the whole number = 3')

In [9]: type(Out[7])
Out[9]: tuple

In [10]: Out[7][0] = 23
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-10-ba7001730f56> in <module>()
----> 1 Out[7][0] = 23

TypeError: 'tuple' object does not support item assignment

In [11]:

Chapter 3, IPython session 38

On input cell In [3]: the set of values is assigned to the variable thevalues, which is then
passed as argument to the function. We could use any other valid name for the list of values.
Then, on input cell In [4]: the function if called, assigning its returned objects to the
variables meanval and message. We know we need to call the function that way from its
documentation in the doc string. In case we don’t need to use the objects returned by the
functions, we can call it without assigning its returned values to a new defined variable, as
is done on input cell In [7]: (remember that the output is assigned to the corresponding
output cell, in this case Out[7], as can be seen on input cell In [8]:). Notice that the
output is delivered enclosed in parenthesis, which are provided by the Python interpreter as
we did not write them in our function. This Python object is called a tuple (see output cell
Out[9]:), they behave similarly like a Python list with the important difference that we can
not change any of its elements (see input cell In [10], according to which a tuple is called an

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



105 Chapter 3: Some applications involving Whole Numbers

immutable object.

To use our function on the input values used in our program on page 80, we do the follow-
ing:

In [11]: TheValues = [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

In [12]: TheMean, message = myfuncMean( TheValues )

In [13]: TheMean
Out[13]: 15

In [14]: message
Out[14]: 'The mean of the values is the whole number = 15'

In [15]:

Chapter 3, IPython session 39

A few words of caution about the variables inside a function are in order. First, do not
let undefined variables inside any function. Always initialize them to a value. The reason
is that the Python interpreter will try to assign to non initialized variables inside any
function (called local variables) a value from the calling program (called global variables),
before issuing an error for trying to use a variable that does not have a value assigned to
it. One way to avoid this is to consistently use a convention to name your variables inside
a function and another convention to name your variables in the main program. Second,
name your functions in a way that do not match any existing built-in Python function or
from any other module you use in your program. Following this little advice can save you
from unnecessary headaches debugging your code.

There is much more to say about writing your own Python functions, but for now what we
have done is sufficient to help you develop computational thinking independence by engaging
yourself in effective learning via the writing as functions the programs to compute the median
(on page 88) and the mode (on page 95) of a set of values, taking care of cleaning your functions
from unnecessary print instructions. Check also the exercises to improve such programs, and
verify that each function works as expected.

Further discussions on functions will be given as the need to use them arise along the book
development. We encourage you to satisfy your appetite on knowing more about functions
consulting the references given at the end of this chapter, starting on page 144.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



106 Chapter 3: Some applications involving Whole Numbers

3.8 Miscellaneous application programs
This section includes a few programs that will help you to further explore some topics of your
Prealgebra course work. Accordingly, you can read aboout many of the topics presented in
your Prealgebra textbook and also on Wikipedia.

The several recipes presented in this (and other) sections of the book gives you the opportunity
to challenge your understanding of any of the topics presented. Taking for granted an active
learning approach, as you read them and work thorough its provided Python implementation,
you might divise ways to improve such recipes. Moreover, the Python infinite precision with
whole numbers make it possible to further analyze some results that via hand computation are
almost impossible or very tedious to do. As you learn more about Python, you will find that
practically each one of the functions of this book has already been efficiently implemented in
some Python modules. For now, the idea is that you do your own correct implementation via
the elementary Python instructions we have learned so far regardless of efficiency.

By the way, be ware that many of the programs in this section applies only to whole numbers
(excluding zero, in some cases). Consequently, this set of programs are missing a check to
ensure (or enforce) that the input data is of the right type for them to work properly. Later on
(in the book) we will learn a bit about how to use assertion statements to make such verification
at the beginng of any program.

3.8.1 Factors of a whole number

From your Prealgebra course work, it is said that given whole number a, b and c such that
a× b = c, then a and b are factors or divisors of c. Consequently, the factors of a whole number
are the numbers dividing it evenly (the remainder is zero).

Thus, an straightforward recipe to find the factors of a whole number is a follows:

1. Set the number
2. Set a variable to hold the list of factors (i.e. ListOfFactors = [])
3. set n = 1
4. Find the remainder of dividing the number by n
5. If the remainder if equal to zero, includes n to the ListOfFactors
6. Increase n by one
7. Repeat steps 4--7 if n ≤ number.
8. Print to screen the list of factors of the number.

This recipe is implemented in the function shown in Figure 3.8, on page 108. You can find this
function in the directory named chapter_03 of the programs that comes with this book, that
you can download from the respective companion web site mentioned in the Preface. In there,
find the file named chap03_prog_08_factor_func.py.

We encourage you to follow the flow of the code in the function. What follows is an example
of using this function:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



107 Chapter 3: Some applications involving Whole Numbers

In [1]: from chap03_prog_08_factor_func import myfuncFactors

In [2]: myfuncFactors?
Signature: myfuncFactors(thenumber)
Docstring:
This function finds and returns in a list all the Factors of
thenumber, including itself.

Example of usage:
getfactors = myfuncFactors( 6 )
print(getfactors)

File: ~/The_prealgebra_book/CH03/chap03_prog_08_factor_func.py
Type: function

In [3]: getfactors = myfuncFactors( 6 )

In [4]: print(getfactors)
[1, 2, 3, 6]

In [5]:

Chapter 3, IPython session 40

Alternatively, one can make available the function in an IPython session as follows (it is rec-
ommended that you start a new IPython console):

In [1]: %run chap03_prog_08_factor_func.py

In [2]: getfactors = myfuncFactors( 6 )

In [3]: print(getfactors)
[1, 2, 3, 6]

In [4]:

Chapter 3, IPython session 41

In some of the following sections we will write programs reusing this function.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



108 Chapter 3: Some applications involving Whole Numbers

Figure 3.8: Function that returns the factors of a whole number

3.8.2 Is this a prime number?

A prime number is any number having as only factors one and the number itself. The literature
on prime numbers is immensely huge, and you will find out there a great jungle on computer
codes to find them.

From its definition, you can see immediately that we can use our function that find the factors
of a number to decide whether a given whole number is or not prime. Certainly, this function is
not optimal for this task and you are encourage to find better ways on doing it. After working
out this section you could continue by trying exercise 3.5, on page 141.

Thus, an straightforward recipe to find if a given number is prime or not is as follows:

1. Set the number.
2. Find the factors of the given number.
3. Add the factors.
4. If the addition of the factors equals the addition of one and the number itself, returns

True (for yes, the number is prime). Otherwise returns False (for no, the number isn’t
prime).

5. Print to screen the result.

This recipe is implemented in the function shown in Figure 3.9, on page 109. You can find this
function in the directory named chapter_03 of the programs that comes with this book, that
you can download from the respective companion web site mentioned in the Preface. In there,
find the file named chap03_prog_09_IsPrime_func.py.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



109 Chapter 3: Some applications involving Whole Numbers

We encourage you to follow the flow of the code in the function. What follows is an example
of using this function:

In [1]: %run chap03_prog_09_IsPrime_func.py

In [2]: getAns = myfuncIsPrime( 11 )

In [3]: getAns
Out[3]: True

In [4]:

Chapter 3, IPython session 42

Figure 3.9: Function returning if a whole number is prime or not.

3.8.2.1 Generating prime numbers: the Sieve of Eratosthenes algorithm

The generation of prime numbers is As already mentioned, the literature on prime numbers is
immensely huge indicative that this subject has kept captivated mathematicians for long time,
continuing nowadays. A major topic of interest is how to generate these numbers efficiently.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



110 Chapter 3: Some applications involving Whole Numbers

A long standing simple clever method to generate prime numbers is the famous sieve algorithm,
invented in the ancient city of Alexandria by Eratosthenes of Cyrene (about 276–296 B.C.).
It is the most efficient way to list all the primes in the range 2 through up to a few millions
n, involving the following steps, suitable for hand, pencil and paper, calculation (recall that a
prime number is any number having as only factors one and the number itself):

1. Enumerate the numbers from 2 up to n.
2. Circle 2 as the first prime number, and cross out from the list every second number (these

numbers are evenly divided by 2 and then, according with its definition, are not prime
numbers).

3. Circle the first not crossed out number (3) as the second prime number, and cross out
from the list all higher multiple of 3 (6, 9, 12, 15, and son on).

4. Circle the first not crossed out number (5) as the next prime number, and cross out from
the list all higher multiple of 5 (10, 15, 20, 25, and so on).

5. Circle the first not crossed out number (7) as the next prime number, and cross out from
the list all higher multiple of 7 (14, 21, 28, 35, and so on).

6. Continue repeating this procedure until the first not crossed out number in the list is the
one whose square is greater than n.

7. All the numbers that has been circle out are the primes from 2 through n.

A moment of thought about this method, an straightforward computer implementation of it
goes as follows:

1. Initialize a list (i.e. theprimes) holding 2 as the first prime.
2. Initialize a list (i.e. thelist) holding all the odd numbers from 3 through n.
3. Remove from thelist its first number and append it to the theprimes list.
4. If the square of the just appended number to the theprimes list (in step 3) is greater than
n, merge both lists: the theprimes and the thelist. Set thelist to be empty.

5. If the square of the just appended number to the theprimes list (in step 3) is not greater
than n, go through thelist and remove from it all the elements evenly divided (remain of
zero) by the just appended element in theprimes list.

6. Repeat steps 3--6 until thelist is empty.
7. Print to screen theprimes.

This recipe is implemented in the function shown in Figure 3.10, on page 111. You can find
this function in the directory named chapter_03 of the programs that comes with this book,
that you can download from the respective companion web site mentioned in the Preface. In
there, find the file named chap03_prog_09_PrimeGen_func.py.

We encourage you to follow the flow of the code in the function. What follows is an example
of using this function:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



111 Chapter 3: Some applications involving Whole Numbers

In [1]: from chap03_prog_09_PrimeGen_func import myfuncPrimeSieve

In [2]: primes = myfuncPrimeSieve(50)

In [3]: primes
Out[3]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

In [4]:

Chapter 3, IPython session 43

Figure 3.10: Function returning prime numbers from 2 up to n.

3.8.3 Is this an abundant number?

We know how to find the factors of a whole number, which includes the number itself. By
withdrawing the number itself from its factors, we are left with the proper divisors of the
number.

An abundant number is any whole number. whose proper divisors add up to more than the
number itself.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



112 Chapter 3: Some applications involving Whole Numbers

From its definition, you can see immediately that we can use our function that find the factors
of a number to decide whether a given whole number is or not abundant via the following
recipe:

1. Set the number.
2. Find the factors of the given number.
3. Find the addition of the proper divisors by adding the factors and subtracting the number.
4. If the addition of the proper divisors is greater than the number itself, returns True

(for yes, the number is abundant). Otherwise returns False (for no, the number isn’t
abundant).

5. Print to screen the result.

This recipe is implemented in the function shown in Figure 3.11, on page 113. You can find
this function in the directory named chapter_03 of the programs that comes with this book,
that you can download from the respective companion web site mentioned in the Preface. In
there, find the file named chap03_prog_10_IsAbundant_func.py.

We encourage you to follow the flow of the code in the function. What follows is an ex-
ample of using this function (see exercise 3.8, on page 142, for an extra practice problem):

In [1]: from chap03_prog_10_IsAbundant_func import myfuncIsAbundant

In [2]: getAns = myfuncIsAbundant( 11 )

In [3]: getAns
Out[3]: False

In [4]:

Chapter 3, IPython session 44

3.8.4 Is this a perfect number?

We know how to find the factors of a whole number, which includes the number itself. By
withdrawing the number itself from its factors, we are left with the proper divisors of the
number.

A perfect number is any whole number. whose proper divisors add up to exactly the number
itself.

From its definition, you can see immediately that we can use our function that find the factors
of a number to decide whether a given whole number is or not perfect via the following recipe:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



113 Chapter 3: Some applications involving Whole Numbers

Figure 3.11: Function returning if a whole number is abundant or not.

1. Set the number.
2. Find the factors of the given number.
3. Find the addition of the proper divisors by adding the factors and subtracting from it the

number.
4. If the addition of the proper divisors is equal to the number itself, returns True (for yes,

the number is perfect). Otherwise returns False (for no, the number isn’t perfect).
5. Print to screen the result.

This recipe is implemented in the function shown in Figure 3.12, on page 114. You can find
this function in the directory named chapter_03 of the programs that comes with this book,
that you can download from the respective companion web site mentioned in the Preface. In
there, find the file named chap03_prog_11_IsPerfect_func.py.

We encourage you to follow the flow of the code in the function. What follows is an ex-
ample of using this function (see exercise 3.9, on page 142, for an extra practice problem):

In [1]: from chap03_prog_11_IsPerfect_func import myfuncIsPerfect

In [2]: getAns = myfuncIsPerfect( 11 )

Chapter 3, IPython session 45

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



114 Chapter 3: Some applications involving Whole Numbers

In [3]: getAns
Out[3]: False

In [4]:

Figure 3.12: Function returning if a whole number is perfect or not.

3.8.5 Greatest common divisor (GCD) or greatest common factor
(GCF) of natural numbers

The greatest common divisor (GCD) (also known as greatest common factor) of a set of whole
numbers is the greatest number that divides all of the given numbers exactly (with no remain-
der).

An straightforward method to find the GCD is by perusing the listing of the factors of the given
numbers. One way of executing this idea to find the GCD value is by comparing the factors
of the smaller number with the factors of the rest, and taking apart the common values (the
ones that appear in all of them). Then, take the maximun value of this common factor list. A
detailed recipe might go as follows:

1. Set the numbers.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



115 Chapter 3: Some applications involving Whole Numbers

2. Sort the numbers from smaller to larger.
3. Find the factors of the smaller number and set it to a particular variable (like smallest-

NumFactors).
4. Collect the factors of the other numbers in a different variable (like othersNumFactors).
5. Compare the values in smallestNumFactors with each one of the list for each other number

in othersNumFactors. Collect the common factors among the numbers.
6. Get the maximum value among the common factors of the numbers.
7. Print to screen the result.

This recipe is implemented in the function shown in Figure 3.13, on page 116. You can find
this function in the directory named chapter_03 of the programs that comes with this book,
that you can download from the respective companion web site mentioned in the Preface. In
there, find the file named chap03_prog_12_GCD_func.py.

We encourage you to follow the flow of the code in the function. Let’s point out a general
description of it. (the referred line numbers correspond to the numeration of the lines of
Figure 3.13, on page 116).

In line of code 1 introduced the definition of the function. Then, in lines of codes 2--11, a brief
description of the function is given. Following line of code 12, the function to find the factors
on a whole number is made available to be used in this function. Lines of code 14--15 just
check if only one number is contained in the variable listOfNumbers, holding the set of numbers
to which the GCD value is being seek. In that case the function ends returning that value to
the calling program of this function. Then follows line of code 17 on which the given set of
numbers are sorted in ascending order (from small to larger). In line of code 19 the factors of
the smallest number are assigned to the variable smallestNumFactors.

In lines of code 20--24 the factors of the others numbers are collected in a list of lists and
assigned to the variable othersNumFactors. This means that the elements in this list are
list objects (and not naive numbers as we have been using so far). This is an example, as
mentioned before, that a Python list can hold any type of Python objects, given an idea of the
flexibility and powerfulness of the language. Let’s illustrate a bit more this idea in an IPython
session:

In [1]: list1 = [1,2,3,4]

In [2]: list2 = [6,5,4,3,2,1]

In [3]: list3 = [10,12]

In [4]: together = [ list1, list2, list3 ]

Chapter 3, IPython session 46

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



116 Chapter 3: Some applications involving Whole Numbers

//

Figure 3.13: Function returning the Greatest Common Divisor (GCD) of a set of whole numbers.

In [5]: together
Out[5]: [[1, 2, 3, 4], [6, 5, 4, 3, 2, 1], [10, 12]]

In [6]: together[0]
Out[6]: [1, 2, 3, 4]

In [7]: together[1]
Out[7]: [6, 5, 4, 3, 2, 1]

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



117 Chapter 3: Some applications involving Whole Numbers

In [8]: together[2]
Out[8]: [10, 12]

In [9]: together[2][1]
Out[9]: 12

In [10]:

On input cells In [1]:--In [4]: the usual way of assigning values to a list is used to assign
some list objects to the respective variables on the left hand side. Notice the content of the
list assigned to the variable together on input cell In [5]:, and how we can take the values
on it via the usual indexing of its first level elements (input cells In [6]:--In [8]:) which
are list objects. Since these elements are list objects them self, their objects can be obtained
using the usual indexing, as shown on input cell In [9]:. We encourage you to continue such
exploration to get used to this way maintaining different objects in a one variable of type list.

Continuing with the description of our function, now comes lines of code 26--35. To compare
the factors of the smaller number with those of the others and take apart the common ones,
one external for loop is used to go through the factors of the smaller value, while an internal
for loop is used in order to go through each set of the factors of the other numbers as a whole
(not one by one as the external for loop does). To find out the common factors, notice the new
usage of the in statement on the line of code 30 (if y in z :). This line of code tells whether the
value y from the smallestNumFactors is contained in the current list held by the internal for
loop variable z. Notice also the use of the boolean variable itis that is used to confirm or not
the check. If, after exiting the internal for loop, this boolean variable holds the value of True
on line of code 34--35, the value y is appended to the gcd list, holding the common factors that
we are searching for. Finally, the function ends returning the maximun common factor in the
gcd list to the calling program of this function.

What follows is an example of using this function (for further practice see exercises 3.10--3.11,
on page 142):

In [1]: from chap03_prog_12_GCD_func import myfuncGCD

In [2]: listOfnumbers = [716, 1266, 1490, 1568]

In [3]: getAns = myfuncGCD(listOfnumbers)

In [4]: getAns
Out[4]: 2

Chapter 3, IPython session 47

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



118 Chapter 3: Some applications involving Whole Numbers

In [5]:

You can verify by hand (pencil and paper) computation that this answer is correct. See exer-
cise 3.11, on page 142 for an alternative way of verifying this answer or the next section.

3.8.6 Prime Factorization of whole numbers

The prime factorization of a number is the expression of the number as a product of its prime
factors. The standard way to find the prime factors of a whole number start with the smallest
prime number as a trial divisor and continue with prime numbers as trial divisors until the final
quotient is prime.

At first sight sight, implementing this algorithm by hand (pencil and paper) computation
should require to have handy a table of ordered prime numbers. Nevertheless, a moment of
though will lead to implementing this method of prime factorization by hand (pencil and paper)
computation, by an increase of one by one of the dividend, as follows: we can start dividing
the given number by the first prime number 2 and, if the remainder is zero, take the quotient
and repeat dividing by 2 until the quotient is not longer exactly divided by it. This process
will also exhaust any possibility of further dividing exactly the number by any multiple of 2
(like 4 = 2× 2, 6 = 2× 3, 8 = 2× 2× 2, 10 = 2× 5, and so forth). Reaching this point, goes
dividing the quotient by the next number which is 3 (that happen to be the next prime number
after 2), and again exhaust the process of exactly dividing each obtained quotient by 3, until
the quotient is not longer exactly divided by 3. This process will also exhaust any possibility of
further dividing exactly the number by any multiple of 3 (like 6 = 2×3, 9 = 3×3, 12 = 2×2×3,
15 = 3 × 5, and so on). The next number to try the division of the quotient is dividing it by
4. But this will not yield an exact division because it was already exhausted when dividing by
2. Then comes dividing the quotient by the next prime number 5. We will keep doing that
division by 5 until the remainder is not longer 0. This procedure, as with the previous cases,
will also exhaust any possibility of having a number that could be divided exactly by any of the
multiples of 5 (like 10 = 2× 5, 15 = 3× 5, 20 = 2× 2× 5, 25 = 5× 5, etcetera). Continuing in
this way, this procedure will get you to be dividing only by prime numbers, as required by the
algorithm. Remember that the procedure will stop whenever a quotient of 1 is reached, which
eventually will happen.

An straightforward implementation of this recipe is as follows:

1. Initialize a variable (i.e. n) holding the number we want its prime factorization.
2. Set a variable holding the first prime number (i.e. i).
3. Set a list to hold the prime factors of the number (i.e. factors).
4. Get the remainder of the dividing n by i.
5. If the remainder is zero, append i to the list of factors and set n to be the quotient of

dividing its current value by i. Otherwise, increase i by one.
Copyright © 2018 by Sergio Rojas. All rights reserved.

Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8
License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



119 Chapter 3: Some applications involving Whole Numbers

6. Repeat steps 4--6 until n gets the value one.
7. Print to screen theprimes.

This recipe is implemented in the function shown in Figure 3.14, on page 120. You can find
this function in the directory named chapter_03 of the programs that comes with this book,
that you can download from the respective companion web site mentioned in the Preface. In
there, find the file named chap03_prog_13_PrimeFactorization_func.py.

We encourage you to follow the flow of the code in the function. What follows is an example
of using this function:

In [1]: from chap03_prog_13_PrimeFactorization_func import
myfuncPrimeFactors

In [2]: thefactors = myfuncPrimeFactors(50)

In [3]: thefactors
Out[3]: [2, 5, 5]

In [4]:

Chapter 3, IPython session 48

How can you verify that this function is returning the correct prime factorization result? (see
exercise 3.13, on page 142.

3.9 Solving equations involving whole numbers via
SymPy

In this section we will introduce the basic elements of solving equations in Python via SymPy
algebraically. Though the context will be limited to whole numbers, everything learned here
works also for any set of numbers, including generic symbols. Certainly, the solutions are limited
to the set of values the symbols could take. Consequently, after reading this section, you might
want to read also the corresponding sections about equations with integers (page 176), fractions
(page 195), and decimals (page 230). You could also practice your skills in solving equations
via the one variable equation solver described on page 236.

Let’s first remain you that this book is intended for you to enhance your learning experience
of your Prealgebra course content via Python programming (this is not a book for you to
become a programmer). Consequently, as mentioned earlier, one of the goals of the book is
that you be able to apply what you learn here to other courses of your educational track and in

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



120 Chapter 3: Some applications involving Whole Numbers

Figure 3.14: Function returning the prime factorization of a whole number.

your professional work development. Consequently, before dealing with equations via Python
programming, make sure you understand the procedures to find their solutions as presented in
your Prealgebra course work. More important, whenever you are confronted with an equation
the first questions you might ask is where I have seen this equation before? If you remember
so, you can then further ask, can I make an algorithm from the steps I have used to solve it
before? Also, keep in mind that equations are not merely a mean to find a numerical value.
Equations can be used to guide our thinking and reasoning, so we can find connections between
the different parts of the problem they comes from (which is usually a word problem from the
Engineerings and/or the Sciences). Later in your educational track you will be amaze that very
simple equations could lead to a very rich dynamics (for an example, check the references on
the logistic map at the end of this chapter).

Knowing that the social environment has a (usually neglected) strong influence in the process
of teaching and learning, let’s further point out that we need to be cautious when processing
opinions such as that the equations your are dealing with has nothing to do with real world
applications or that what is important is conceptual understanding over knowing how to solve
equations. From our perspective, such opinions needs to be taking as if we were handling nails.
On the first opinion underly the idea of starting a fast race without warming up. Someone will
certainly be hurt following trying to do so. The second comment is even worse because it is
a subtle (sound) one. It is like a drop of water silently (passing unnoticed) eroding the basis
of a building. It ignores that our conceptual understanding actually comes from the study of
the phenomena after this was described by equations that goes refined over the years as we get
better and wider data about the phenomena. In spite of how important and passionate this

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



121 Chapter 3: Some applications involving Whole Numbers

discussion might be, to continue with our topic of finding the solution of equations via SymPy ,
let’s refer you to the references at the end of this chapter in case you have interest in a deeper
view of the meaning of equations and how they are responsible of our conceptual understanding
of nature.

From your Prealgebra course work, an equation expresses the equality of two mathematical
expressions in the generic form: left hand side (LHS) = right hand side (RHS).
Some examples of simple, one variable (x), equations are:

x+ 6 = 11 (3.1)
3x− 2 = 16 (3.2)
5x− 1 = 3x+ 15 (3.3)

x− 2

4
+ 5 =

2(1− x)

5
+ 8 (3.4)

In these equations the numeric values are called coefficients, receiving the particular name on
independent coefficients the numerical values not appearing multiplying the variable x.

When dealing with any equation, one neds to think about the meaning of the elements in the
equation. Take for instance the equal sign: How do you understand it? In most cases, you
might think of the equal sign in terms of representing an arithmetic identity, in the sense that
the equations you are studying in your Prealgebra course work were build for you to become
acquainted with methods to find the unknownw (variable) in the equation, so both sides of the
equation balance (becomes an arithmetic identity). But in other cases the equal sign helps you
to use parts of the equation in any other computation by substitution. Take for example a
rectangular box of side a, b, and c. The volumen of this rectangular box is V = abc. But you
could also wirte this volume using the surface of any of the face. Take, for example, the fae of
sides a and b having as surphace Sab = ab. Using this expression, because of the equal sign,
one could write V = Sabc as an equivalent expression for the volume of the box.

Consisten with the previous idea, as the solution to any of the just listed (an any other)
equations we refers to the value that can be assigned to the variable x so that a true statement
(arithmetic identity) results. For instance, the value 5 satisfies the equation x+6 = 11, because,
when x takes the value of 5 (x = 5), a true statement (arithmetic identity) results (5 + 6 = 11).
Any other value taken by x will result in a false statement. In these equations we have used
x as the variable, but we could have used any other symbol (that could be used as a variable
name in Python). Consequently, to solve an equation means to find the solution of the equation
(in this section we will be dealing with equations that can have one and only one solution).

In general symbolic terms, the example of one variable (x) equations presented above can be
casted in more general terms using non-numeric or symbolic coefficients a, b, c, or d can be
written as:

x+ a = b (3.5)
ax+ b = c (3.6)
ax+ b = cx+ d (3.7)

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



122 Chapter 3: Some applications involving Whole Numbers

We encourage you to pay extreme attention in your Prealgebra course work to the methods
used to solve equations. Python and any other software will hide the solution methods from
you, unless you carry them step by step, as if you were dealing with solving the equation by
hand (using pencil and paper). We are not going to do that here. Instead, we will learn how
to setup the equations so Python, via the SymPy module, can give you the answer, which then
you can check to be sure you are getting the correct answer. But you will not know at first
sight how SymPy found the answer.

Accordingly, we insist, you need to understand the process of solving equations as explained in
your Prealgebra course work. For one reason, that it will enrich you problem-solving though
processes. For another, you might need to apply them in situations were you do not have
available any computer or you might be working in places with not enough budget to buy
them. And yet another one, for fun, to remind yourself that you are a human being. Doing
so will means you have gained understanding that goes beyond the performing of rote manip-
ulation of the symbols in an equation. In this way you will be able to apply this knowledge of
solving equations in other subjects of your educational track (like Physics, Chemistry, Biology,
Psychology, and the others)

In concordance with the preceding discussion, what follows is a brief introductions on how you
could use SymPy to find the solution of an equation. You could use it as a way to explore
solutions of more general equations.

Let’s get started with the basic functionality to solve equations via SymPy . First, load into a
current IPython session the SymPy functionality:

In [1]: from sympy import symbols, Eq, solveset

In [2]: x, a, b, c = symbols('x, a, b, c')

In [3]: type(a)
Out[3]: sympy.core.symbol.Symbol

In [4]:

Chapter 3, IPython session 49

Here, on input cell In [1]:, we make available into the current IPython session the functions
from SymPy (the order of them in the Python instruction on input cell In [1]: is irrelevant):

1. symbols : as we have used it before, it can be used to define symbolic variables, as is done
for the variables x, a, b, and c on input cell In [2]:, and confirmed on output cell
Out[3]: for one of them (the symbol a).

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



123 Chapter 3: Some applications involving Whole Numbers

You can read more about symbols by executing on an IPython cell the instruction symbols?
or symbols??.

2. Eq : which is used to setup the equation to which its solution we are seeking. It is used
in the form Eq(LHS, RHS).
You can read more about Eq by executing on an IPython cell the instruction Eq? or
Eq??.

3. solveset ; which is the recommended way to find the solution of an equation in SymPy .
Other alternative is to use the function solve, which will let you to explore on your own.
It is used in the form solveset(equation, variable).
You can read more about solveset by executing on an IPython cell the instruction solveset?
or solveset??.

To find the solution of the equation x − 17 = 20, after identifying that LHS = x − 17 and
RHS = 20, we solve it as follows:

In [4]: LHS = x - 17

In [5]: RHS = 20

In [6]: thesol = solveset( Eq(LHS, RHS), x)

In [7]: thesol
Out[7]: {37}

In [8]: type(thesol)
Out[8]: sympy.sets.sets.FiniteSet

In [9]: thesol = list( thesol )

In [10]: thesol
Out[10]: [37]

In [11]:

Chapter 3, IPython session 50

Here, on output cell Out[7]:, we have the solution of our equation assigned in a Python data
type container called set which does not allow indexing of its elements. For that reason, on
input cell In [9]: the variable thesol is converted to a Python list object. This way one can
test that the number (37) assigned to the variable thesol is in fact the solution of the equation:
This is done as follows:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



124 Chapter 3: Some applications involving Whole Numbers

In [11]: thesol[0] - 17 == 20
Out[11]: True

In [12]:

Chapter 3, IPython session 51

Finding the solution of a full symbolic equation ax+b = cx+d is a follows:

In [1]: from sympy import symbols, Eq, solveset

In [2]: x, a, b, c, d = symbols('x, a, b, c, d')

In [3]: LHS = a*x + b

In [4]: LHS
Out[4]: a*x + b

In [5]: RHS = c*x + d

In [6]: RHS
Out[6]: c*x + d

In [7]: thesol = list( solveset( Eq(LHS, RHS), x) )

In [8]: thesol
Out[8]: [-(b - d)/(a - c)]

In [9]: a*thesol[0] + b
Out[9]: -a*(b - d)/(a - c) + b

In [10]: c*thesol[0] + d
Out[10]: -c*(b - d)/(a - c) + d

In [11]: a*thesol[0] + b == c*thesol[0] + d
Out[11]: False

In [12]:

Chapter 3, IPython session 52

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



125 Chapter 3: Some applications involving Whole Numbers

As shown on output cell Out[11]:, the verification of the solution is not straightforward
as is with numbers. We still need to use one more SymPy function. The simplify function
(or method) which comes to our rescue to finally show that we have gotten the right an-
swer:

In [12]: from sympy import simplify

In [13]: simplify(a*thesol[0] + b)
Out[13]: (a*d - b*c)/(a - c)

In [14]: simplify(a*thesol[0] + b) == simplify(c*thesol[0] + d)
Out[14]: True

In [15]:

Chapter 3, IPython session 53

An alternative way to do a proper verification of the solution, we will use a transformed way
of the equation. Instead of using LHS = RHS we will work with the transformed (equivalent)
equation LHS −RHS = 0,

In [15]: newLHS = LHS - RHS

In [16]: newLHS
Out[16]: a*x + b - c*x - d

In [17]:

Chapter 3, IPython session 54

Now, we need to replace the variable x for the solution we have just found. This is done using
the SymPy function (or method) subs as follows:

In [17]: newLHS = newLHS.subs(x, thesol[0])

In [18]: newLHS

Chapter 3, IPython session 55

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



126 Chapter 3: Some applications involving Whole Numbers

Out[18]: -a*(b - d)/(a - c) + b + c*(b - d)/(a - c) - d

In [19]: newLHS == 0
Out[19]: False

In [20]:

We still need to use one more SymPy function. The simplify function (or method) comes to
our rescue to finally show that we have gotten the right answer:

In [20]: newLHS.simplify() == 0
Out[20]: True

In [21]: simplify(newLHS) == 0
Out[21]: True

In [22]:

Chapter 3, IPython session 56

How we can use this general result assigned to the variable thesol.? One way is finding the
solution of any numerical equation, like the one we worked on page 123, consisting in finding
the solution of the equation x−17 = 20, resulting in x = 37. Comparing this equation with the
algebraic equation ax+ b = c ∗ x+ d, we can see that the former equation is obtained from the
later one via setting or replacing a = 1, b = −17, c = 0, and d = 20. Accordingly, the setting
of this values in the algebraic solution, we should get the solution (37) of our earlier equation.
In fact it does:

In [18]: thesol[0].subs([(a, 1), (b, -17), (c, 0), (d, 20)])
Out[18]: 37

In [19]:

Chapter 3, IPython session 57

You can find this program in the directory named chapter_03 of the programs that comes
with this book, that you can download from the respective companion web site mentioned in the

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



127 Chapter 3: Some applications involving Whole Numbers

Preface. In there, find the file named chap03_prog_14_Sympy_SolvingSymbolicEquation.
py, which you can execute either from a system shell (terminal) or from an IPython session.

We encourage you to follow the flow of the code in the function.

3.9.1 The sailors, the coconuts, and the monkeys problem

A popular problem involving whole number reads as follows (a couple of general references
about it are cited at the end of the chapter):

Five sailors survive a shipwreck and swim to an island having (among other things)
coconut trees and monkeys. As soon as reaching land, the sailors gathered and piled a
good amount of coconuts agreeing to equally divide them the next day. Finished the task
of collecting coconuts, exhausted, they all went to sleep.
When they were all asleep, one man woke up, and decided to take his share. He divided
the coconuts into five piles an one coconut was left over that was thrown to the monkeys.
After hidden his pile, he put the rest back together and went back to sleep. After a while,
a second sailor wakes up and decides to take his share. He divided the coconuts into five
piles an one coconut was left over that was thrown to the monkeys. After hidden his pile,
he put the rest back together and went back to sleep. The third, fourth and fifth sailors
each also wake up at different moments and carry out the same actions as the first two
did.
In the morning, all the sailors wake up, and ignoring what they did during the night, they
divided the pile of coconuts left into five piles, but this time the division was perfect (no
coconut was left over). The exercise is to figure out how many coconuts were there, in
the initial pile that the sailors collected when reaching the island.

We can start working on this problem by trying to set its wording formulation in relevant
equations, recognizing first that any result (including the ones obtained at intermediated steps)
must be in the domain of whole numbers. Suppose there were a total of (the dividend) N
coconuts in the initial pile. The first sailor to divide it by (the divisor) five found a remainder
of one coconut. Calling by q1 the (quotient) number of coconuts taken by the first sailor, and
recalling that for a division dividend = divisor × quotient+ remainder, we have that:

N = 5q1 + 1 (3.8)

q1 =
N − 1

5
(3.9)

When this first sailor takes and hides what he think is its part (of q1 coconuts), four piles
containing the same amount of coconuts (4q1) remains to be divided again between five. Con-
sequently, when the second sailor makes the division he will take and hide:

4q1 = 5q2 + 1 (3.10)

q2 =
4q1 − 1

5
(3.11)

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



128 Chapter 3: Some applications involving Whole Numbers

When this second sailor takes and hides what he think is its part (of q2 coconuts), four piles
containing the same amount of coconuts (4q2) remains to be divided again between five. Con-
sequently, when the third sailor makes the division he will take and hide:

4q2 = 5q3 + 1 (3.12)

q3 =
4q2 − 1

5
(3.13)

When this third sailor takes and hides what he think is its part (of q3 coconuts), four piles
containing the same amount of coconuts (4q3) remains to be divided again between five. Con-
sequently, when the fourth sailor makes the division he will take and hide:

4q3 = 5q4 + 1 (3.14)

q4 =
4q3 − 1

5
(3.15)

When this fourth sailor takes and hides what he think is its part (of q4 coconuts), four piles
containing the same amount of coconuts (4q4) remains to be divided again between five. Con-
sequently, when the fifth sailor makes the division he will take and hide:

4q4 = 5q5 + 1 (3.16)

q5 =
4q4 − 1

5
(3.17)

When this fifth sailor takes and hides what he think is its part (of q5 coconuts), four piles
containing the same amount of coconuts (4q5) remains to be divided again between five. Con-
sequently, when all the five sailors are ready to make the division the final division, it happen
that (since no remainder is found):

4q5 = 5q6 + 0 (3.18)

q6 =
4q5
5

(3.19)

In summary, we are left with the following set of equations:

q1 =
N − 1

5
(3.20)

q2 =
4q1 − 1

5
(3.21)

q3 =
4q2 − 1

5
(3.22)

q4 =
4q3 − 1

5
(3.23)

q5 =
4q4 − 1

5
(3.24)

q6 =
4q5
5

(3.25)

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



129 Chapter 3: Some applications involving Whole Numbers

Examining this set of equations, we see immediately that if we know N (the initial amount
of coconuts), we can compute q1, then q2, following with q3, continuing with q4, then q5, and
finally q6. The only property here is that in each division we must get a whole number.

Since computers are good at performing repetitive tasks, we can think on trying many trial
possibilities for N until we get a value for N that lead to subsequent whole number values for
the subsequent qi quotients. A recipe would be as follows:

1. Set N = 1.
2. Computes q1.
3. If q1 is a whole number, continue computing q2. Otherwise increase N by one and go to

step 2.
4. If q2 is a whole number, continue computing q3. Otherwise increase N by one and go to

step 2.
5. If q3 is a whole number, continue computing q4. Otherwise increase N by one and go to

step 2.
6. If q4 is a whole number, continue computing q5. Otherwise increase N by one and go to

step 2.
7. If q5 is a whole number, continue computing q6. Otherwise increase N by one and go to

step 2.
8. If q6 is a whole number, continue printing to screen N , q1, · · · , q6. Otherwise increase N

by one and go to step 2.
9. Increase N by one and go to step 2.

An implementation of this recipe is shown in Figure 3.15, on page 132. You can find this
function in the directory named chapter_03 of the programs that comes with this book, that
you can download from the respective companion web site mentioned in the Preface. In there,
find the file named chap03_prog_15_SailorsCoconuts.py.

Executing this program changing the variable howmanysols you can see that this exercise does
not have a unique solution:

In [1]: %run chap03_prog_15_SailorsCoconuts.py
Found required 3 values for N = [3121, 18746, 34371]

In [2]:

Chapter 3, IPython session 58

To evaluate the rightness of the obtained results, it occur that this problem happen to have
an analytical answer which you could use to asses the evaluation of the numerical computation

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



130 Chapter 3: Some applications involving Whole Numbers

(see the reference by Gardner, page 110, listed in the reference section, and the Appendix , on
page 133 for a derivation of it):

N = (1 + 5k)55 − 4,∀ integer k ≥ 0 (3.26)

Notice that the obtained results corresponds, respectively, to the values k = 0, k = 1, and
k = 2. As an exercise, to further evaluate the rightness of any of the just obtained numerical
results, choose one and compute the total amount of coconuts taken by each sailor (after the
final step). Do you get N adding them? Should it be? Are any of the intermediated results
whole numbers? To carry out this exercise you might one to have the quantities q1, q2, · · · , q6
expressed in terms of the initial amount of coconuts N . An straightforward representation can
be found using SymPy as follows:

In [1]: from sympy import symbols

In [2]: N, q1, q2, q3, q4, q5, q6 = symbols('N, q1, q2, q3, q4, q5,
q6')

In [3]: q1 = (N - 1)/5

In [4]: q1
Out[4]: N/5 - 1/5

In [5]: q2 = (4*q1 - 1)/5

In [6]: q2
Out[6]: 4*N/25 - 9/25

In [7]: q3 = (4*q2 - 1)/5

In [8]: q3
Out[8]: 16*N/125 - 61/125

In [9]: q4 = (4*q3 - 1)/5

In [10]: q4
Out[10]: 64*N/625 - 369/625

In [11]: q5 = (4*q4 - 1)/5

In [12]: q5
Out[12]: 256*N/3125 - 2101/3125

Chapter 3, IPython session 59

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



131 Chapter 3: Some applications involving Whole Numbers

In [13]: q6 = (4*q5)/5

In [14]: q6
Out[14]: 1024*N/15625 - 8404/15625

In [15]:

The preceding results are not very illuminating (see a further discussion on Appendix apend:chap03,
on page 133). However, we encourage you to study and compare each one of the given repre-
sentations. For example, taking the last result (the output cell Out[14]:) q6 is found to have
been assigned the value of 1024

15625
N − 8404

15625
, which you need to compare with the one given by

the relation A.16, on page 135.

From this result, we can obtain a representation for N in case q6 is given to have a unique
solution of the problem:

q6 =
1024

15625
N − 8404

15625
(3.27)

q6 =
1

15625
(1024N − 8404) (3.28)

15625q6 = (1024N − 8404) (3.29)
15625q6 + 8404 = 1024N (3.30)

1024N = 15625q6 + 8404 (3.31)

N =
15625q6 + 8404

1024
(3.32)

3.10 Chapter Summary
In this chapter you have done great! In order to enhance your understanding of the topics in
your Prealgebra course work, you might want to continue writing and executing computations
with whole numbers using your own writing Python functions, applying the basic Python ele-
ments you have learned so far: variables, Python list objects, Python relational operators, and
performing repetitive computations via the Python for and while loops, in addition to some
built-in Python functions and others coming from some other modules. Later on you can go to
a more advance Python book to make important improvements on the efficiency of your func-
tions. The most important thing at this moment is that your program give correct answers and
you need to start thinking about developing strategies for testing the rightness of the results of
your programs (and also of the results obtained by other programs).

At the end of this chapter we worked out the solution of equations using the SymPy module
and also how to verify that the solution found satisfy the given equation. Keep in mind that
the general procedure is also applied beyond whole numbers.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



132 Chapter 3: Some applications involving Whole Numbers

//

Figure 3.15: Program to find solutions to the sailors, coconuts, and monkeys problem.

In the next chapter we will learn about some of the formalities of the Python print function
that we have been using without much explanation; we will also study some basic elements of
reading from and writing to the screen and to files, including the writing of messages indicating
the user of your programs that something is not right in the given input using Python exception
handling methodology.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Appendix of Chapter 3

A.1 Algebraic solution to the sailors, the coconuts, and
the monkeys problem

In approaching a way to find a solution of this problem (posed on page 127), the first thing
that comes to mind, after a careful reading of its statement, is that any solution must be
given in terms of the prescribed initial amount of coconuts (N) and that it must be in the
domain of whole numbers (including any intermediated result). As a second step, perhaps,
after recognizing the previous condition, your thought processes were directed momentarily to
a quick tour recalling the properties of the whole numbers that you have learned so far in your
Prealgebra course work. Then, as a third step, you might have decided to start rephrasing the
wording of the problem in term of the language of equations 3.20--3.25 (on page 128) according
to the given instructions in the description of the problem. Each one of the preceding steps are
part of designing or deciding an approach to attempt a solution of the problem, that in turns
are the guiding principles to propose the numerical algorithm of page 129 to find a numerical
answer to the problem, that (after implementing in Python the algorithm) let us to find that
it has a not unique solution, as shown in page 129. The last step is to evaluate the correctness
of the found answers, for which you were let the exercise 3.15, on page 143.

In passing regarding the no uniqueness of the solution to this problem, you will find in the liter-
ature wording alternatives that imposes extra conditions to the problem so that the respective
solution is unique.

We will not be explicitly concerned with those alternatives problem here. Nevertheless, to
find solutions for those situations, it is better to start thinking on the possibility of finding a
better analytical representation of the problem in terms of equations, improving the obtained
straightforward (direct) representation that we have studied in section 3.9.1 (page 127) and
summarized in the set of equations 3.20--3.25 (on page 128) and further complemented with
the SymPy analysis of page 130.

Thinking about the problem, you might find that this preceding analysis is unsatisfactory be-
cause we don’t see any pattern in the equations that captures the repetitive involved operations
(until the final step) taking into account the amount of coconuts left at any intermediated step
and the initial amount of coconuts N (we only have developed the straightforward setup of the
problem in term of the qi amount of coconuts taken by each sailor at different times during the
night). Why is this important, you might be wondering. The answer is that the given quantity

133



134 Appendix of Chapter 3

in the problem is the initial amount of coconut N , not the amount of coconuts taken by the
sailors. That they must be whole numbers are conditions that needs to be fulfilled in order to
considering any found solution satisfactory.

After this reflection, your thoughts processes might have turn now in finding such suitable
representation. A way of doing it starts computing the amount of coconuts N1 left after the
first sailor divides the initial pile of coconuts N by 5, which results in N1 = 4q1 = 4(N−1

5
).

Furthermore, after a while of involvement based on our experience from the previous analysis
of section 3.9.1, on page chap03:MonkeyCoconuts, we will find that this quantity might better
be rewritten in the form:

N1 =
4

5
(N + 4)− 4 (A.1)

N1 + 4 =
4

5
(N + 4) (A.2)

q1 =
N1

4
=

1

4

(
4

5

)
(N + 4)− 1 (A.3)

As a matter of fact, our intuition is rewarded when in the next step the amount of coconuts
N2 left in the pile after the second division is given by N2 = 4q2 = 4

5
(4q1 − 1) = 4

5
(N1 − 1) =

4
5
(N1 + 4)− 4, from which one can get:

N2 =
4

5
(N1 + 4)− 4 =

4

5

(
4

5
(N + 4)

)
− 4 =

(
4

5

)2

(N + 4)− 4 (A.4)

N2 + 4 =

(
4

5

)2

(N + 4) (A.5)

q2 =
N2

4
=

1

4

(
4

5

)2

(N + 4)− 1 (A.6)

Noticing the pattern that is being formed, we continue computing the next N3 amount of
coconuts left after the third division N3 = 4q3 = 4

5
(4q2 − 1) = 4

5
(N2 − 1) = 4

5
(N2 + 4)− 4, from

which one can get:

N3 =
4

5
(N2 + 4)− 4 =

4

5

((
4

5

)2

(N + 4)

)
− 4 =

(
4

5

)3

(N + 4)− 4 (A.7)

N3 + 4 =

(
4

5

)3

(N + 4) (A.8)

q3 =
N3

4
=

1

4

(
4

5

)3

(N + 4)− 1 (A.9)

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



135 Appendix of Chapter 3

Follows the next N4 amount of coconuts left after the fourth division N4 = 4q4 = 4
5
(4q3 − 1) =

4
5
(N3 − 1) = 4

5
(N3 + 4)− 4, from which one can get:

N4 =
4

5
(N3 + 4)− 4 =

4

5

((
4

5

)3

(N + 4)

)
− 4 =

(
4

5

)4

(N + 4)− 4 (A.10)

N4 + 4 =

(
4

5

)4

(N + 4) (A.11)

q4 =
N4

4
=

1

4

(
4

5

)4

(N + 4)− 1 (A.12)

Now the next N5 amount of coconuts left after the fifth division N5 = 4q5 = 4
5
(4q4 − 1) =

4
5
(N4 − 1) = 4

5
(N4 + 4)− 4, from which one can get:

N5 =
4

5
(N4 + 4)− 4 =

4

5

((
4

5

)4

(N + 4)

)
− 4 =

(
4

5

)5

(N + 4)− 4 (A.13)

N5 + 4 =

(
4

5

)5

(N + 4) (A.14)

q5 =
N4

4
=

1

4

(
4

5

)5

(N + 4)− 1 (A.15)

Finally, dividing the amount of coconuts left after the fifth division, each sailor gets the extra
amount of coconuts N6 = q6 = 1

5
(4q5) = 4

5
q5, from which one can get:

N6 = q6 =
4

5
q5 =

4

5

(
1

4

(
4

5

)5

(N + 4)− 1

)
=

1

4

(
4

5

)6

(N + 4)− 4

5
(A.16)

The condition here breaks the last recursive relationship we were obtaining for the number of
coconuts at each stage!.

From this result, we can obtain a representation for N in case N6 is known:

N6 +
4

5
=

1

4

(
4

5

)6

(N + 4) (A.17)

4

(
N6 +

4

5

)(
5

4

)6

= N + 4 (A.18)

N = 4

(
N6 +

4

5

)(
5

4

)6

− 4 (A.19)

N =
4

5
(5N6 + 4)

(
5

4

)6

− 4 = (5N6 + 4)

(
5

4

)5

− 4 (A.20)

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



136 Appendix of Chapter 3

Now, from this equation, based on the condition that the result must be a whole number, a
moment of thought tells us that to find the minimal amount of initial coconuts we need to
impose that 5N6 + 4 = 45. This leads to the result N = 55 − 4 = 3121, which is the first value
found with our program of page 132, and shown on page 129. To find more solutions, some
extra work is required.

Furthermore, pursuing forward an analytical solution, based on our preceding result, we can
start imposing the general condition that 5N6 + 4 = α45, with α any natural number (recall
that the natural numbers excludes the zero from the whole numbers). This guarantees that
N = α55− 4 is also a natural number, as required by the setup of the problem. Notice that we
have excluded zero as a possible solution to the problem. It might be considered a trivial (non
interesting) solution of it.

To proceed with the task of finding an analytical solution satisfying all the conditions required
by the problem, your thought process might be guided o ask whether assuming the hypothetical
condition also lead to natural numbers as required for the intermediate steps? To find out that,
we start finding the value for N6:

5N6 + 4 = α45 (A.21)
5N6 = α45 − 4 (A.22)

N6 =
α45 − 4

5
(A.23)

A moment of thought tells us that for Equation A.23 be a natural number, we can choose
α = 1 + 5k (with k any whole number) so that we can rewrite that equation in the form:

N6 =
(1 + 5k)45 − 4

5
=

5k45 + 45 − 4

5
(A.24)

N6 = 45k +
45 − 4

5
(A.25)

Since 45−4
5

= 1020
5

= 204 is a natural number, it follows that N6 will be a natural number for any
(whole number) value taken by k. Via similar steps, substituting (or using) N = (1 + 5k)55− 4
on each one of the respective equations for N1, N2, · · · , N5 we see that natural numbers
are obtained for those quantities, which proves that Equation 3.26, on page 130 is the exact
(general) solution for our problem. In carrying out such computations you might find useful
the summary of intermediated results:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



137 Appendix of Chapter 3

N = (1 + 5k)55 − 4 (A.26)
N + 4

55
= 1 + 5k (A.27)

N + 4

54
= (1 + 5k)5 (A.28)

N + 4

53
= (1 + 5k)52 (A.29)

N + 4

52
= (1 + 5k)53 (A.30)

N + 4

5
= (1 + 5k)54 (A.31)

N + 4 = (1 + 5k)55 (A.32)

Reaching this point, it is a good idea to revise your work, but this time trying to make explicit in
your course of reasoning the stages of designing (the solution of the problem), implementing (the
designed course of action to find a solution), and testing (the found solution of the problem).
These stages can actually be converted into more specific directions (but not too specific to be
confusing or distractive) providing sufficient guidance in the development process of problem-
solving. Our research in this regards let us to propose (and used here) what we have argued
elsewhere (see the reference section) to be a dynamic problem solving strategy, not to be confused
with modes of reasoning, constructed from the following steps:

1. Understand and describe the problem.
2. Provide a qualitative description of the problem.
3. Plan a solution.
4. Carry out the plan.
5. Verify the internal consistency and coherence of the equations used and the applied pro-

cedures.
6. Check and evaluate the obtained solution.

In using this strategy, don’t think of a rigidly sequential application the steps to the problem
at hand. Instead you have to consider each one of them at any level of the advancing process to
find a solution of the problem. Keep in mind that any inflexible problem solving strategy can
only be of limited value. Moreover, a key important aspect of applying this dynamic problem
solving strategy is your ability to ask questions.

By asking questions while solving a problem one becomes engaged in a process of self-explaining
components of the underlying procedure being applied to solve the problem. Asking questions
also helps in the detection of “comprehension failures” about the problem and the procedure
being applied to solve it, and to take action to overcome them such comprehension failures.

Examples of questions to be asked constantly, during the process of solving a problem, include:
how this knew knowledge is related to what I already know.? In which context I have seen this

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



138 Appendix of Chapter 3

problem before.? In which context could I use this piece of knowledge.? How these seemingly
disparate discrete pieces of knowledge be functionally and causally related.? Does the principles
to be applied can be used in this situation.? Is this approach the right one.? How can I be
certain of it.? Are we sure one can do this or that.?

More importantly, by know you will be aware that quantitative reasoning and problem solving
skills are a desirable outcome from the process of teaching and learning of the sciences. In this
regards, a well structured problem solving strategy, understood as a dynamical process, offers
a feasible way to learn and analyze subjects quantitatively and conceptually. It also helps the
practitioner to reach the state of an “adaptive expert”, highly skillful on innovation and effi-
ciency, a desired outcome from the perspective of a “Preparation for Future Learning” approach
of the process of teaching and learning effectively leading to the formation of individuals who
are highly efficient in applying (transferring) what they know to tackle new situations and are
also extremely capable of innovation in the sense of being able to inhibit inadequate blocking
“off the top of the head processes” or “to break free of well-learned routines” so that they can
move to new learning episodes by finding, perhaps ingenious, ways to approach first time met
situations.

We have no doubt that as you get into consciously practicing the basic steps of writing programs
(namely designing, implementing, and testing algorithms) you will be approaching the stage of
becoming an skillful on innovation and efficiency “adaptive expert.”

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Exercises of Chapter 3
Exercise 3.1 In an IPython console execute the following lines of code:

def myfuncIntsRandom(howmany, minVal=0, maxVal=100):
import random
temp = []
for i in range(howmany):

temp = temp + [random.randrange(minVal,maxVal+1)]
return temp

theVals = myfuncIntsRandom(20)
print(theVals)
theMaxVal = theVals[0]

k = 0
while k < len(theVals)-1:

k = k + 1
if (theMaxVal < theVals[k]):

theMaxVal=theVals[k];
print('The largest value in the set is = {0}'.format(theMaxVal))

print('max(theVals) - theMaxVal = {0}'.format(max(theVals) - theMaxVal))

Exercise 3.2 In an IPython console execute the following lines of code:

TheValues = [2, 5, 1, 0, 7, 5, 3, 8, 50, 9, 11, 4]

print("\n Data at the beginning: ", TheValues)

#----
thesize = len(TheValues)
done = True
i = 0
while done:

done = False

139



140 Exercises of Chapter 3

tempsize = range( thesize - i - 1 )
for j in tempsize:
if ( TheValues[j] > TheValues[j+1]):

temp = TheValues[j];
TheValues[j] = TheValues[j+1];
TheValues[j+1] = temp;
done = True

i= i + 1
#----
print("\n Data at the end: ", TheValues)

After executing the code, what do you think this program is doing.? Could you follow the flow
of the code usin paper and pencil using a small sample of values, like [1, 5, 2].? How could you
improve the testing of the code?

Exercise 3.3 The lines of code on page 92, could be replaced by the following ones:

k = MostRepeatedVals[0]
MultiMode = 0
m = 0
mm = len(MostRepeatedVals)
while ( m < mm ):

j = MostRepeatedVals[m]
if j != k:

MultiMode = MultiMode + 1 # hay otro valor
m = m + 1

Could you see what is the difference between them.? Which one would you choose.? Could you
think of a better option.? Could you change the code to use a for loop instead of the while
loop.?

Exercise 3.4 Execute the mode program on page 95, using the following data sets:

TheValues = [17, 14, 14, 17, 16, 15, 16, 17, 14, 15, 13, 18, 13, 17,
17, 16]

TheValues = [17, 14, 16, 15, 13, 18]

TheValues = [17, 14, 14, 16, 15, 16, 14, 15, 13, 18, 13]

TheValues = [17, -14, -14, 16, 15, 16, -14, 15, 13, 18, 13, 16]

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



141 Exercises of Chapter 3

TheValues = [17, -14.55, -14.55, 16.1, 15, 16.1, -14.55, 15, 13, 18,
13, 16.1]

Exercise 3.5 The following function can be used to test if a given number n is or not prime
(follow its flow and compare it with the sieve method of section 3.8.2.1, starting on page 109):

def myfuncISprime(n):
import numpy as np
if n < 2:
return False

if n == 2:
return True

i = int( np.sqrt(n) )
while (i != 1):
if (n % i == 0):
return False

i = i - 1
return True

Write a program to test this function with some whole numbers (after trying a few number,
you might one to review section 3.6, starting on page 98). This function can also be used as
a simple prime number generator, from one up to the given whole number n. Can you write a
code for doing it.?

Exercise 3.6 SymPy offer an efficient implementation to test primality It works as follows:

In [6]: from sympy.ntheory import isprime

In [7]: isprime( 350500000000555500 )
Out[7]: False

In [8]:

How could you verify the rightness of the obtained result.?

By the way, read about this function executing in an IPython cell the instruction isprime?
or isprime??.

Exercise 3.7 Write a program to verify that the primality of the numbers generated via the
function of section 3.8.2.1, on page 111 (showing our implementation of the sieve method for

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



142 Exercises of Chapter 3

prime number generation). For this you might want to review section 3.8.2, starting on page 108
and section 3.6, starting on page 98.

Exercise 3.8 Using the function that finds if a given whole number is abundant or not (shown
in page 113), write a program that shows that for 1 ≤ n ≤ 1000 there are 246 abundant whole
numbers. Which one is the smallest abundant whole number.?

Exercise 3.9 Using the function that finds if a given whole number is perfect or not (shown
in page 114), can you write a program that shows that for 1 ≤ n ≤ 1000 there are only three
whole numbers.? Which one are they.?

Exercise 3.10 The Euclidean algorithm for finding the greatest common divisor (GCD) of
two whole numbers x and y goes as follows: if y = 0, the GCD is x, and vice versa. Otherwise,
get the remainder (r) of dividing x by y (here we assume x ≥ y). If r 6= 0, assign y to x and r
to y, and repeat th procedure until a remainder of zero is obtained. The last non-zero remainder
is the GCD between x and y. Your task is to write this algorithm as a function and test its
functionality.

Exercise 3.11 From your Prealgebra course work, you might know that a way for verifying
that a given GCD of a set of values is the right one consist in finding the quotient of dividing
each one of the given values by the obtained GCD and then verifying that the only common
factor among the results is the number one. In other words, the GCD of the quotients must be
one. Could you write a program to verify the output of the GCD function shown on page 116.?

Exercise 3.12 SymPy offer an efficient implementation to find out the greatest common factor
of whole numbers. It works as follows:

In [1]: from sympy.core.numbers import igcd

In [2]: thegcd = igcd(5, 10, 15, 125)

In [3]: thegcd
Out[3]: 5

In [4]:

How can you verify that the obtained answer is the right one.? Remember to read about this
function executing in an IPython cell the instruction igcd? or igcd??. Are you surprised.?

Exercise 3.13 Can you think of a way to verify the rightness of the answer returned by the
function computing the prime factorization of a number. shown on Figure 3.14, page 120.?
Write down a program implementing your idea.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



143 Exercises of Chapter 3

Exercise 3.14 SymPy offer an efficient implementation to find out the prime factorization of
whole numbers. It works as follows:

In [1]: from sympy.ntheory import factorint

In [2]: thefactorization = factorint(350500000000555500).items()

In [3]: thefactorization
Out[3]: dict_items([(2, 2), (3, 1), (5, 3), (3181, 1), (73456984177,

1)])

In [4]: thefactorization = sorted( thefactorization )

In [5]: thefactorization
Out[5]: [(2, 2), (3, 1), (5, 3), (3181, 1), (73456984177, 1)]

In [6]:

Could you apply your program of the previous problem to check the prime factorization reported
by this SymPy function.? Remember to read about this function executing in an IPython cell
the instruction factorint? or factorint??.

By the way, in case you apply our function on page 120 in the large number of input cell In
[2]: you might need to hit CTRL-C to stop it as it will take a long time to print out the result.

Exercise 3.15 Verify the obtained numerical results for the sailors, coconuts, and monkeys
problems shown in page 129, corresponds, respectively, to the values k = 0, k = 1, and k = 2
of the Equation 3.26, on page 130. To further evaluate the rightness of the obtained numerical
results, for all of them compute the total amount of coconuts taken by each sailor (after the final
step). Do you get N adding them? Should it be? Are any of the intermediated results whole
numbers? Should they be? Why?

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



References of Chapter 3

Books and/or Articles
• Marecek, L. and Smith, M. A. (2017). Prealgebra, Rice University, OpenStax
https://openstax.org.
Book available for free at: http://cnx.org/content/col11756/1.9

• Gardner, M. (1987). The 2nd Scientific American book of mathematical puzzles &
diversions. The University of Chicago Press.

• Problem-solving strategies:
Polya, G. (1988) How to solve it. A new aspect of mathematical method. Expanded
edition, Princeton University Press. Heller, J. I. and Reif, F. (1984) Prescribing Effec-
tive Human Problem-Solving Processes: Problem Description in Physics. Cognition and
Instruction, 1 (2), 177--216. Rojas, S (2012) Enhancing the process of teaching and learn-
ing physics via dynamic problem solving strategies : a proposal. Revista Mexicana de Física
E, 58 (1), 7--17 (Freely available at http://rmf.fciencias.unam.mx/pdf/rmf-
e/56/1/56_1_022.pdf ).
Rojas, S (2010) On the teaching and learning of physics problem solving. Revista Mex-
icana de Física, 56 (1), 22--28 (Freely available at http://rmf.fciencias.unam.
mx/pdf/rmf-e/56/1/56_1_022.pdf ).

• About equations:
Bernstein, M. A. and Friedman, W. A. (2009). Thinking about equations: A practi-
cal guide for developing mathematical intuition in the Physical Sciences and Engineering.
John Wiley & Sons, Inc.
Cochrane, R. (2016). The Secret Life of Equations: The 50 Greatest Equations and
How They Work. Octopus Publishing Group, Ltd.
Farmelo, G. (2002) It must be beautiful. Great Equations of Modern Science. Granta
Books. Hewitt, P. G. (2011) Equations as guides to thinking and problem solving. The
physics teacher, 49 (), 264. Rojas, S (2008) On the need to enhance physical insight via
mathematical reasoning. Revista Mexicana de Física E, 54 (1), 75--80 (Freely available
at https://rmf.smf.mx/pdf/rmf-e/54/1/54_1_75.pdf ).

• Logistic map:
May, R. M. (1976) Simple mathematical models with very complicated dynamics, Na-

144



145 References of Chapter 3

ture, 261 (5560) 459--467.
Devaney, R. L. (1992) A first course in chaotic dynamical systems. Theory and exper-
iments. Addison-Wesley Publishing Company, INC.

References on the WEB
• Prime numbers:
http://primes.utm.edu/

• The Monkey and the coconuts problem:
http://mathworld.wolfram.com/MonkeyandCoconutProblem.html

• MIT OCW Python Course:
http://web.mit.edu/600/www

1. Eric Grimson, and John Guttag. 6.0001 Introduction to Computer Science and
Programming in Python. Fall 2008. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-
SA
http://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-00-introduction-to-computer-science-and-programming-
fall-2008/

2. Ana Bell, Eric Grimson, and John Guttag. 6.0001 Introduction to Computer Science
and Programming in Python. Fall 2008. Massachusetts Institute of Technology:
MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons
BY-NC-SA
https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/index.htm

• Logistic map:
https://en.wikipedia.org/wiki/Logistic_map

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



4

Reading and writing (input/output) in Python
“The best way to predict the future is to write it.”

Folk Wisdom

4.1 Introductory remarks
In the preceding chapters we started to write small Python programs using the gedit text editor
which can then be executed using the IPython console or the system (terminal) shell. We also
made use of the built-in Python print function without explaining its operational structure
(you were suppose to exercise an act of faith and type it as given).

In this chapter we will introduce basic operational functionalities of Python for reading data
entered via the keyboard or from text files. We will use the writing of data to files in text format
(we let you to explore in your own other formats). Complementing these actions, we will study
the controlling of input data via assertion statements capturing exceptions and unexpected
type of data. With this knowledge you can start writing short Python games to be played in a
terminal of system shell. We will do that with the guess a two digit game analyzed in section 1,
on page 47.

Accordingly, after finishing this chapter, you’ll be equipped with a basic set of Python tools
that will allow you to write fully functional programs that will allow you o take advantage of
the computational power of your computer to fully explore the topics of your prealgebra course
work, limited for now to whole (and integers) numbers until studying in the next chapter the
representation of real numbers in Python. Keep in mind that a major goal of your investment
reading this book is (as an independent learner) to enhance your skills in applying what you
have learned to tackle new first (unfamiliar) met situations. The successful acquisition of such
desired outcome requires your engagement in an effective learning involvement of constantly
applying the programming stages of designing (actions), implementing (the actions in some
order), and assessing (the performance of such actions) to any other real world situations.

4.2 Python print function
So far we have been using the print function in the simple form, using simple or double
quotes:

146



147 Chapter 4: Reading and writing in Python

In [1]: printout0 = 198

In [2]: printout1 = 'is a string'

In [3]: print('1st output = {0} ; 2nd output {1}'.format(printout0,
printout1))

1st output = 198 ; 2nd output is a string

In [4]: print("1st output = {0}; 2nd output {1}".format(printout0,
printout1))

1st output = 198; 2nd output is a string

In [5]: print('2nd output {1} ; 1st output = {0}'.format(printout0,
printout1))

2nd output = is a string ; 1st output = 198

In [6]: print('This {1}, then a number {0}. This {1}
...'.format(printout0, printout1))

This is a string, then a number 198. This is a string ...

In [7]:

Chapter 4, IPython session 1

In these printing instructions we have let the Python interpreter decide how to print to screen
each required output (i.e., we are not passing instructions about how many digits to print and
how to print them). Just notice the correspondence between the numbers enclosed in curly
braces {· · · } and the parameters inside the parenthesis of the format instruction. The first
parameter printout0 has been assigned what is going to be printed in place of {0}, while the
second parameter printout1 has been assigned what is going to be printed in place of {1}. And
that is the sequence for for printing to screen the remainder parameters, if there were more. In
case there are no parameters to be passed to the format instruction, the later can be omitted
from the string to be printed by the print function.

As shown in the preceding IPython session (input cells In [5]: and In [6]:), we
should point out that while the sequence of parameters inside the parenthesis of the
format instruction are numbered in the sequence they appear (from left to right starting
from zero), they could appear in any order (and as many times as required) enclosed by
the curly braces inside the body (string) statement to be printed on the computer screen,
surrounded by single or double quotes to the left of the format instruction.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



148 Chapter 4: Reading and writing in Python

The set of characters enclosed by single or double quotes are called Python string objects.
Among other properties, similar to a Python list, string objects support indexing and concate-
nation via the plus (+) sign. There is also available the Python built-in function str that allows
the conversion of other Python objects to a string type object. The following IPython session
illustrates a few aspects of working with string objects:

In [10]: a = 'xyz + / \ @ # 123 1 a d " % *'

In [11]: a
Out[11]: 'xyz + / \\ @ # 123 1 a d " % *'

In [12]: print(a)
xyz + / \ @ # 123 1 a d " % *

In [13]: a[0]
Out[13]: 'x'

In [14]: a[4]
Out[14]: '+'

In [15]: a[-1]
Out[15]: '*'

In [16]: type(a)
Out[16]: str

In [17]: type(a[6])
Out[17]: str

In [18]: a[6] + a[8]
Out[18]: '/\\'

In [19]: a[9]
Out[19]: ' '

In [20]: a[8]
Out[20]: '\\'

In [21]: a[8] = 'this'
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-21-9faac9dbb34f> in <module>()

Chapter 4, IPython session 2

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



149 Chapter 4: Reading and writing in Python

----> 1 a[8] = 'this'

TypeError: 'str' object does not support item assignment

In [22]: a[0] + 1
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-8830f3e33e89> in <module>()
----> 1 a[0] + 1

TypeError: must be str, not int

In [23]: a[0] + str(1)
Out[23]: 'x1'

In [24]: a[14]
Out[24]: '1'

In [25]: a[14] + str(1)
Out[25]: '11'

In [26]: '\n'
Out[26]: '\n'

In [27]: print('\n')

In [28]: print('This is a \t tab')
This is a tab

In [29]: print("It's the printing of single quote")
It's the printing of single quote

In [30]: print('It\'s the printing of single quote')
It's the printing of single quote

In [31]: print('Printing double quotes ("... ")')
Printing double quotes ("... ")

In [32]: print("Printing single ' and double quotes (\"... \")")
Printing single ' and double quotes ("... ")

In [33]:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



150 Chapter 4: Reading and writing in Python

The backslash ('\') string symbol has a special meaning inside the print function (recall that
by itself, not enclosed in quotes, the backslash (\) symbol indicates line continuation). For
instance, on input cell In [12]: it is interpreted as a way of escaping (printing) itself, as a
double backslash string ('\\') prints only one backslash. Two special string characters are
commonly used in strings: the newline character ('\n'), which is used to generate a new line,
and the tab character ('\t'), which generates a tab. Other characters are available. We will
introduce the necessary ones along the text, but we let you as a homework to find them.

By default, the print function applies the new line character after finishing its printing to screen
(which is also the default option). There are situations on which we want to continue printing
in the same line using a later print instruction. We can overwrite the default behavior of the
print by adding, comma separated, end='' after (if there is one) the format instruction as
follows:

In [22]: print('The number {0} followed by \\'.format(8));print('\\')
The number 8 followed by \
\

In [23]: print('The number {0} followed by
\\'.format(8),end='');print('\\')

The number 8 followed by \\

In [24]: print('This is a printout ', end='');print('continued by
another')

This is a printout continued by another

In [25]:

Chapter 4, IPython session 3

Another alternative to write the printing output is to assign repetitive strings to variables and
then use them as necessary:

In [26]: thestring = 'This is a string repeated in many printing
instructions'

In [27]: print(thestring)

Chapter 4, IPython session 4

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



151 Chapter 4: Reading and writing in Python

This is a string repeated in many printing instructions

In [28]:

This basic usage of the print instruction allows you to write necessary instructions to the users
of your code. We will use them to print instructions when reading data that needs to be entered
from the keyboard or when writing data to files. To further understand the functionality of the
print function you are welcome to read the documentation [https://docs.python.org/
3/library/functions.html#print].

4.3 Python input function and try--except statement
Python provides the built-in function input to capture data typed by the user. The syntax of
this function is as follows:

input(string_variable)

It will wait until the user enter or type whatever is being requested and hits theRETURN key.
It can be used to pause the execution of a program. The following IPython session illustrate
how the function works:

In [1]: x = input('Enter something and hit return: ')
Enter something and hit return: wert

In [2]: print(x)
wert

In [3]: type(x)
Out[3]: str

In [4]: x = input('Enter something and hit return: ')
Enter something and hit return: 234

In [5]: print(x)
234

In [6]: type(x)
Out[6]: str

Chapter 4, IPython session 5

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



152 Chapter 4: Reading and writing in Python

In [7]:

Notice that the default output from the input function is of type str (see the output cells
Out[3]: and Out[6]:), representing an string object discussed in the previous section. Py-
thon has the built-in functions float and int to convert numerical values represented as strings
in actual numbers.

This fact is further illustrated by the function shown in Figure 4.1, on page 153, which was
written for reading a whole number entered interactively by a user using the computer keyboard
executing that function. Other examples will be shown in subsequent sections, but its usage in
this book will not go beyond what is shown in the aforementioned Figure.

The functionality of using the input function can be enriched by the programmer (exercising
its good programming skills) via the try--except instruction to ensure that the received data
is of the type required by the Python program being executed. This instruction also helps to
capture and handle exceptions that otherwise could make the program crash without the user
knowing the reason, with eventually some precious time lost trying to find the bug.

Via the references listed at the end of this chapter, on page 168, you are encourage to explore the
many capabilities allowed by the statement try--except to handle exceptions. We will limit our
use of exception handling to print a message telling the user that something strange happened
with the given input and also printing what was the mistake as captured by Python.

try:
Instructions to be execute

except Exception as myerrorCaptured:
What to do if an error happen in the body of try

Used in this way, the flow of the code enters the body of the try statement and if something
goes wrong considered as an exception in Python the flow of the code will go to execute the
body of the except Exception as, assigning to the variable myerrorCaptured whatever exception
had happened. Consequently, the programmer can apply a defensive programming step to tell
why and where the code is falling.

An example of using the try--except instruction is shown in Figure 4.1, on page 153. You can
find this function in the directory named chapter_04 of the programs that comes with this
book, that you can download from the respective companion web site mentioned in the Preface.
In there, find the file named chap04_prog_01_TryExcept.py.

As mentioned, the function in Figure 4.1 is used to read a whole number entered by the user of
the function via the keyboard. The function assumes that the user could make mistakes while
typing the required output and sets (via the variable attempts) three options to do that. A while
loop is used to do the reading having as control variables the result of combining the states of
the boolean variable myitis with the result of verifying whether count ≤ attempts. The loop

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



153 Chapter 4: Reading and writing in Python

Figure 4.1: Function using try--except to read whole number.

ends whenever that result is False. Inside the loop, lines 10− − 11 illustrates combinations of
strings. The value is read via the instruction on line 12 (using the input function) and the result
will be tried to be converted to an integer (using the function int) on line 13. In case something
wrong happen in this type casting instruction, the flow of the program will continue with the
execution of the body of the except Exception as instruction, where the error forking the flow
of the program to this level is printed to the screen and the counter and myitis variables are
reassigned. The while loop condition is evaluated and, according to the new state, the user
receives or not a new opportunity to enter the required input value. If no error happen on line
13 (meaning that he user entered and accepted number), then the if--else statement verifies
that the number is effectively a whole number, returning it to the calling program in line 15
or reassigning values to the variables counter and myitis in case the given number is negative
(not a whole number). In the later case, The while loop condition is evaluated and, according
to the new state, the user receives or not a new opportunity to enter the required input value.
At the end, when the while loop if exited, the program returns to the calling program which
receives either a whole number or the value None (in case the user could not entered an accepted
value after the given three attempts). The following IPython session illustrates how to use the
function:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



154 Chapter 4: Reading and writing in Python

In [1]: from chap04_prog_01_TryExcept import myfuncReadInt

In [2]: ans = myfuncReadInt()
Enter a whole number (attempt 1 of 3): asa
When reading your input, something strange happened:

*** <class 'ValueError'> ***
Enter a whole number (attempt 2 of 3): 2.8
When reading your input, something strange happened:

*** <class 'ValueError'> ***
Enter a whole number (attempt 3 of 3): -3

Negative values are not whole numbers!!!

In [3]: ans

In [4]: print(ans)
None

In [5]: ans = myfuncReadInt()
Enter a whole number (attempt 1 of 3): 234

In [6]: print(ans)
234

In [7]: ans = myfuncReadInt()
Enter a whole number (attempt 1 of 3): 0

In [8]: print(ans)
0

In [9]:

Chapter 4, IPython session 6

We encourage you to further explore the functionality of this function. Illustrative examples
using this function will be shown in the following sections. First, in the next subsection we will
use the function to read a set of values entered via the keyboard, and then, in the continuing
section, we will use the function as part of a program to play with the computer the guess two
digits game of section 2.8, whose discussion is presented starting on page 47.

4.3.1 Reading data entered via the keyboard

An example to further illustrate the usage of our function to read whole numbers entered via
the keyboard and shown in Figure 4.1, on page 153, we will use it to read a set of whole

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



155 Chapter 4: Reading and writing in Python

number and assign them to a list object. These values can them be used to feed the programs
to compute, for example, the statistical measures we studied in section 3.5, on page 78.

The program for reading the data set is shown in Figure 4.2, on page 155. You can find this
program in the directory named chapter_04 of the programs that comes with this book, that
you can download from the respective companion web site mentioned in the Preface. In there,
find the file named chap04_prog_02_ReadFromKeyboard.py.

Figure 4.2: Program to read a set of whole numbers entered via the keyboard.

As we have already discussed, the function in Figure 4.1 returns the Python special value None if
the function receives (in the three options the user has) a wrong entry. As seen in input line 11 of
Figure 4.2 that value is used to control the end for given data to the program. We are confident
you can understand by know the rest of the lines of code in that program. Here we show a
working example executing the program from a system shell or terminal:

$ python chap04_prog_02_ReadFromKeyboard.py
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 23
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 10
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 0
Reading a new number (to exit hit return 3 times)

Chapter 4, System shell command 1

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



156 Chapter 4: Reading and writing in Python

Enter a whole number (attempt 1 of 3): 22
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 23
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 54
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 54
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 67
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3): 98
Reading a new number (to exit hit return 3 times)
Enter a whole number (attempt 1 of 3):

When reading your input, something strange happened:

*** <class 'ValueError'> ***
Enter a whole number (attempt 2 of 3):
When reading your input, something strange happened:

*** <class 'ValueError'> ***
Enter a whole number (attempt 3 of 3):
When reading your input, something strange happened:

*** <class 'ValueError'> ***
*** EXITING THE READING ***

[23, 10, 0, 22, 23, 54, 54, 67, 98]

Notice that at the end of the program the entered numbers are printed to the computer screen,
but as we have already mentioned they can be used to feed any other of the programs we have
studied in the preceding sections and chapters requiring a set of values.

4.4 Programing the guess two-digits game
In this section we will discuss a program you can use to play the guess two digits game of
section 2.8, whose discussion starts on page 47.

The program is shown in Figure 4.3, on page 157. You can find this function in the directory
named chapter_04 of the programs that comes with this book, that you can download from
the respective companion web site mentioned in the Preface. In there, find the file named
chap04_prog_03_GuessTwoDigits.py.

Exploring the program you will see that only Python instructions that we have studied so far
are used in this code (but see exercises 4.3 and 4.4, for some ways to improve the program).
Following the flow of code (according to the instructions of the game) you will not have any
major trouble understanding it.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



157 Chapter 4: Reading and writing in Python

Figure 4.3: Program of the two-digit game, section 2.8, page 47.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



158 Chapter 4: Reading and writing in Python

4.5 Programing the guess a number game
The guess a number is a popular game to help students of the elementary school to practice
their understanding of the order of magnitude of numbers (as well as to improve their ability
to follow instructions).

The game can be programmed in the computer using what is called the bisection method. This
a powerful searching method which allows to divide a searching interval in half and then (after
testing the search condition) pay attention to only one half to search what we are looking for.
Then this new interval is again divided in half and then (after testing the search condition) pay
attention only one half to search what we are looking for. This process is repeated again and
again after one finds what we are looking for.

In the case of the guess a number game, you ask your partner to think of a whole number
within a range (i.e. zero and a hundred). Then you ask your partner to tell you whether the
number she or he have thought is lower/higher than the middle point of the chosen interval or
neither (meaning you have guessed correctly the number). Then, if your guess is lower, you
take as a new guess the middle point between zero and the previous middle point. If your guess
is higher, you take as a new guess the middle point between the previous middle point and
a hundred. After checking that the thought number is lower/higher or neither than this new
guess, the process is repeated over and over until the guess is obtained.

We let as exercise 4.5 (page 166) for you to write a recipe (algorithm) to program this game so
you can play it with the computer (which is the one that is going to guess the number you have
thought). Test that the computer guess correctly the lower and upper limit in your interval.
Also remember that the Python3 operator for integer division is double forward slash (//).

A sample session of yor program might looks like:

$ python chap04_prog_03_GuessNumber_exercise.py
Please, think of a whole number between 0 and 100
Hit return to continue

Is your secret number 50?.
Enter 'h' to indicate the guess is too high.
Enter 'l' to indicate the guess is too low.
Enter 'n' to indicate neither of the above.

l
Is your secret number 75?.

Enter 'h' to indicate the guess is too high.
Enter 'l' to indicate the guess is too low.
Enter 'n' to indicate neither of the above.

h
Is your secret number 62?.

Chapter 4, System shell command 2

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



159 Chapter 4: Reading and writing in Python

Enter 'h' to indicate the guess is too high.
Enter 'l' to indicate the guess is too low.
Enter 'n' to indicate neither of the above.

h
Is your secret number 56?.

Enter 'h' to indicate the guess is too high.
Enter 'l' to indicate the guess is too low.
Enter 'n' to indicate neither of the above.

l
Is your secret number 59?.

Enter 'h' to indicate the guess is too high.
Enter 'l' to indicate the guess is too low.
Enter 'n' to indicate neither of the above.

l
Is your secret number 60?.

Enter 'h' to indicate the guess is too high.
Enter 'l' to indicate the guess is too low.
Enter 'n' to indicate neither of the above.

l
Is your secret number 61?.

Enter 'h' to indicate the guess is too high.
Enter 'l' to indicate the guess is too low.
Enter 'n' to indicate neither of the above.

n
Game over. Your secret number was: 61

4.6 Writing and reading text files in Python
An importan aspect of a programming language is the ability to write and read files. There is
a plethora of Python packages that offer versatile modules to execute these operation in many
file formats (i.e. text and binary files, databases, and whatever other data type might be out
there). In this book we will be using the buil-in Python function open to write and read text
files. You are wellcome to find out about performing these tasks in other file formats perusing
the references listed at the end of this chapter, on page 168. Since we already know how to
capture data from the keyboard, we will start learning how it can be written to a (text) file,
that then we want to read from a Python program.

4.6.1 Writing text files in Python

Once we have generated data using our program, we want to be able to save it to a file for
further use of it. We will limit our discussion to the writing of text files that can later be opened

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



160 Chapter 4: Reading and writing in Python

with any text editor, like gedit discussed in section 3.2.1 (page 66). For that purpose, Python
offer the build-in function open with the following basic syntax:

with open(filename, operation) as filehandler:
filehandler.write(text1)
filehandler.write(text2)
· · ·
· · ·
· · ·

In this setup, with, open, and as are reserved Python keywords. The filename is any string of
characters that can be used as the name of a file in your operating system. It is the name of
the file were the data will be saved or written. The operation can take (in this book) the string
value 'wt' or "wt" (single or double quotes included) for writing (or overwriting) a text file.
It can also take the string value 'at' or "at" (single or double quotes included) for appending
(not overwriting) data to an existing text file. The filehandler is any Python variable name
that is used to access the file (via its filename) for writing, as is shown in the body of the
with instruction, represented by the indented lines under it. Using the with instruction has the
advantage of properly closing the file when finishing executing its last (indented) line of code.

You could explore more about the open function via executing the instruction open? or
open?? in any IPython input cell. In the reference section of this chapter, on page 168 you
will find pointers to other sources discussing the topic.

The program in Figure 4.4, on page 161, illustrates the use of this approach. You can find this
program in the directory named chapter_04 of the programs that comes with this book, that
you can download from the respective companion web site mentioned in the Preface. In there,
find the file named gedit_my_program_04_writingTest.py.

Executing this program from the system (terminal) shell (or from an IPython console) will
create (in the same directory where the code is executed) the file named chap04_write_
test_file.txt, whose contents is shown below:

$ python chap04_prog_04_writingTest.py
$ more chap04_write_test_file.txt
x x*x x*x*x
1 1 1
2 4 8

Chapter 4, System shell command 3

A few comments about the program are in order:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



161 Chapter 4: Reading and writing in Python

• Notice that the written file contains three space separated columns and three rows, being
the first row a header containing the names of each column.

• Strings and numeric values can be written to the same file using the same instruction.
• In case something goes wrong opening the file, it is reported via the except Exception as

instruction. In there, you need to devise any other set of actions to properly save your
data, specially if your program has been running for quite some time.

• The lines of code 13 and 17 adds the newline character ('\n') after finishing writing the
last value in the respective row. When reading the data, each line will have its particular
place. You can distinguish them via that newline character. We will see that in the next
section.

• Pay attention to the extra white spaces included in the writing instructions in lines 12
and 16. This is what makes (already mentioned) the space separation between columns
in the written file.

• This program is general enough that it is worthwhile making it a function (see exercise 4.7,
on page 166).

Figure 4.4: Program showing how to write data to a file.

4.6.2 Reading text files in Python

So far we have been working with data entered via the computer keyboard. This is required
for small data set of data. Most of the time, the processing power of the computer is used to
operate on large data sets, stored in a variety of file formats.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



162 Chapter 4: Reading and writing in Python

In our case, We will limit our discussion to reading text files that can be opened with any
text editor, like gedit discussed in section 3.2.1 (page 66). For that purpose, Python offer the
build-in function open with the following basic syntax:

with open(filename, 'rt') as filehandler:
filehandler.read(text1)
filehandler.read(text2)
· · ·
· · ·
· · ·

In this setup, with, open, and as are reserved Python keywords. The filename is any string
of characters that can be used as the name of a file in your operating system. It is the name
of the file from which the data will be read. Notice that the operation of reading text files is
specified by the string value 'rt'.

The filehandler is any Python variable name that is used to access the the file (via its filename)
for reading, as is shown in the body of the with instruction, represented by the indented lines
under it. Using the with instruction has the advantage of properly closing the file when finishing
executing its last (indented) line of code.

You could explore more about the open function via executing the instruction open? or
open?? in any IPython input cell. In the reference section of this chapter, on page 168 you
will find pointers to other sources discussing the topic.

The program in Figure 4.5, on page 165, illustrates the reading of the file written using our
program of page 161. You can find the reading program in the directory named chapter_
04 of the programs that comes with this book, that you can download from the respective
companion web site mentioned in the Preface. In there, find the file named chap04_prog_
05_readingTest.py.

Before continuing, let’s point out that reading data from a file requires knowing its structure,
so you can read it directly to be used to perform right away computations on it. Other files
might require extra pre-processing before obtaining the data ready to operate on it (we will
not be concerned with such files in this text). Consequently, before reading data from a file we
nee to understand how data has been organized on it.

Consequently, when perusing the reading code of Figure 4.5 (page 165), keep in mind (see
page 160) that the written file (that we named chap04_write_test_file.txt) contains
three space separated columns and three rows, being the first row a header containing the
names of each column. This means that it should be read as a string type variable. The other
rows contains numerical values and they can be read and converted to numbers of type integers.

Executing this program from the system (terminal) shell (or from an IPython console) shows
the following output:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



163 Chapter 4: Reading and writing in Python

$ python chap04_prog_05_readingTest.py
Read line from file = x x*x x*x*x
strip-split processed row = ['x', '', '', '', 'x*x', '', '', '',

'x*x*x']
removed '' processed row = ['x', 'x*x', 'x*x*x']

Read line from file = 1 1 1
strip-split processed row = ['1', '', '', '', '', '1', '', '', '',

'', '1']
removed '' processed row = ['1', '1', '1']

Read line from file = 2 4 8
strip-split processed row = ['2', '', '', '', '', '4', '', '', '',

'', '8']
removed '' processed row = ['2', '4', '8']

Data read in a list:
['x', 'x*x', 'x*x*x']
[1, 1, 1]
[2, 4, 8]

Chapter 4, System shell command 4

A few comments about the program are in order:

• Let’s emphazise that the this program works for text files with data in space separated
columns, having the first row as a header (not a data entry to be used in any further
computation). If the first row is also numerical data, then you need to change the line of
code 25 to read row = 0. Otherwise, the first row will be considered a header.

• The print statements in lines 11, 13, 16, and 18 are unnecessary. You need to comment or
delete them from the program. They are there to show what is happening at intermediated
steps.

• The for loop in line 10 indicates the file is being read line by line. Each line is captured
in the variable row controling the execution of the loop. From the output on page 162
you can see that each line of the file is read as a string Python type.

• The body of the loop is a set of preprocessing steps to put the data in a format ready to
perform numerical comptations on it. First, in line of code 12 the row is cleaned out of
the newline character at the end of the row via the string strip() method. Then, the row
is divided into pieces separated by white spaces ' ' and asiggned to a list. We use this

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



164 Chapter 4: Reading and writing in Python

strategy because at least one white space caracter should be within columns. Via lines
of code 14--15 the row is further cleaned from this extra non-data characters. Finally,
the row is appended to the list named data. This process continues with the next row in
the file and goes on until the last line of the file is read and appended to data.

• In case something is wrong opening the file, it is reported via the except Exception as
instruction. In there, this time we included the instruction sys.exit(1) from the module
sys , imported to the current computational environment in line of code 20. If executed,
this line of code makes the program to finish execution. This line of code is included
because there is no sense continuing the execution of the program if the data can not be
read from the file.

• Lines of code 25--31 represents the additional preprocessing of converting the necessary
data to numrical values (integers in this case). These lines of code can be converted in
fewer lines using the Python built-in map function (see exercise 4.8 (page 166).

4.7 Chapter Summary
Reaching the end of this chapter you are now equipped with the important issue that bring
your Python computing power to a higher stage. As time goes, you’ll learn more advance topics
on file handling via a more appropriated learning and trying setup. Remember that your major
interest should be Prealgebra so you can apply its computing power in other fields (physics,
chemistry, biology, engineering, poetry, human rights, you continue naming it).

Being able to read and write text files allows you to perform computations in large data sets.
Perhaps you can help your school department (or your teacher in a small research endeavor) in
computing the average grades of the whole school and discriminate them by age, gender, social
habits, and so forth. The school don’t need to spent unnecessary money in private software to
do so.

Coming back to what we have learned in this chapter, being capable of reading and writing
text files is more than enough to perform high level computing explorations in your Prealgebra
course work. As mentioned elsewhere in the chapter, we have made major effort in applying
what the basics of programming common to any programming language (if--else statements,
while and for loops, variables and function definitions) which you can further practice trying
non-traditional computing problems in your Prealgebra course work (without any doubt, you
could also understand the flow of a code in any other computer language that will allow you to
enrich your Python constructions).

In the next chapter we will learn about the elements of the nuances of the Python float data
type as the way of representing real numbers in the computer.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Figure 4.5: Program showing how to read space separated columns data from a file.

165



166 Exercises of Chapter 4

Exercises of Chapter 4
Exercise 4.1 Modify the function of Figure 4.1, on page 153 to read whole numbers such that
the user can only has two attempt to type correctly the number.

Exercise 4.2 Modify the function of Figure 4.1, on page 153 to read and return any entry (the
function should never return None) to the calling program. Is it helpful to have a function to
perform this task?

Exercise 4.3 The program in Figure 4.3, on page 157, can have a few lines less if we re-
place the lines of code 19--21 by the instruction reversenum = temp[::-1] followed by
the other (which you could make one, if you wish) reversenum = int(reversenum).
In addition, you could replace the lines of code 24--27 by the instruction difference =
abs(reversenum - thenumber) (why?). Please make those changes and make sure you
understand them.

Exercise 4.4 The program in Figure 4.3, on page 157, can be further improved by setting the
line of code 12 via randomly drawing the required three digit whole number. This way, the
computer will be the one setting up the beginning of the game. Please, perform such changes.
For this you might one to reread section 3.6.

Exercise 4.5 Write a recipe (algorithm) to program the guess a number game as described in
section chap04:sec:GuessAnumber (page 158). Implement in Python your recipe so you can
play the game with the computer (which is the one that is going to guess the number you have
thought). Test that the computer guess correctly the lower and upper limit in your interval. Also
remember that the Python3 operator for integer division is a double forward slash (//). What
happen is the user answer incorrectly any of the questions? Could you write code instructions
to handle those cases?

Exercise 4.6 Make the program of Figure 4.4 (page 161) to append data to an existing file.
After modifying the program, you can test it in the same data file by executing the program
consecutively twice or several times.

Exercise 4.7 Make the program of Figure 4.4 (page 161) a function taking as arguments,
passed by the user, the filename, the labels to each column of data, the data in a list properly
organized to be written in columns, and the writing mode (whether the writing operation will
overwrite and existing file or append data to it).

Exercise 4.8 Modify the program of Figure 4.5 (page 165) replacing lines of code 25--31 by
the lines:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



167 Exercises of Chapter 4

row = 1
while row < len(data):

data[row] = list(map(int,data[row]))
row = row + 1

Verify the code works as expected.

Exercise 4.9 Make the program of Figure 4.5 (page 165) a function taking as arguments,
passed by the user, the filename to be read. The function should return the data as printed in
lines of code 34--35.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



References of Chapter 4

Books and/or Articles
• Marecek, L. and Smith, M. A. (2017). Prealgebra, Rice University, OpenStax
https://openstax.org.
Book available for free at: http://cnx.org/content/col11756/1.9

References on the WEB
• Python 3 tutorial:
https://docs.python.org/3/tutorial/index.html

• Input/output in Python:
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/reference/compound_stmts.html#the-with-
statement https://docs.python.org/3/library/sys.html

• Input/output alternatives in Python:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.
html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.
html
http://pandas.pydata.org/
https://wiki.python.org/moin/DatabaseInterfaces
FINDHDF5inpythonhttp://hdf.ncsa.uiuc.edu/HDF5/doc/PSandPDF/

• Errors and exceptions in Python:
https://docs.python.org/3/tutorial/errors.html https://docs.python.
org/3/library/exceptions.html

168



5

Integers and Rational numbers in Python
“ Mathematics is not just a tool by means of which phenomena can be calculated, it is the
main source of concepts and principles by means of which new theories can be created.”

Freeman Dyson

5.1 Introductory remarks
Before starting, let’s remind ourselves where we are standing. Studying whole numbers and its
basic operations, we have introduced a good deal of Python programming instructions which
includes assignments to variable, boolean comparisons, repeatability via looping constructs,
function abstraction, and input from and output to text files. We have also introduced some
Python built-in functions, the most important of which is the Python list object which al-
lows the encapsulation of different data types in one place facilitating its uses for performing
computations on them. This basic knowledge allows us to basically compute anything that is
computable, but we still needs to study the representation of numbers in Python beyond whole
numbers.

Nevertheless, in the context of the restricted field of whole numbers, the introduced Python pro-
gramming instructions have given you the ability to write programs to deal with non-traditional
Prealgebra course work problems (i.e. the sailors, the coconuts, and the monkeys problem). But
we also wrote some Python programs to perform specific computations from your Prealgebra
course work (i.e. mean, median, mode, and some others) taking as input whole numbers and
given as output whole numbers. We mentioned that some of the programs were general enough
to accept as input other types of numbers (integers, reals, or even complex type ones) to per-
form the desired (meaningful) computations on them (keeping an eye that some computations
have only meaning in the context of whole numbers).

In reading this chapter, you are suppose to have read and (surely you had) understood the
preceding chapters as we will using in here basically all of the Python instructions we introduced
in these preceding chapters. We will also include a few new Python built in functions as we
need them to deal with the numbers in this chapter.

To be specific, in this chapter we will give a quick introduction to integer and how to operate
with them in Python, continuing then with a more lengthy discussion about fractions and
fractional expressions.

You are suppose to get acquainted with the theoretical background about these topics in your

169



170 Chapter 5: Integers and Fractions in Python

Prealgebra course work. As is the characteristic in this book, Python will be used as a means to
enhance and enrich your understanding of these topics by allowing you explore non-traditional
course work applications as they might be too long or tedious to be performed manually (using
pen and paper). Just keep in mind that if you do not understand basic Prealgebra operations
and their relationship you could be trap in just doing operations mechanically. Your program-
ming experience is suppose to help your thinking become increasingly abstract by building on
concrete understandings via conscious problem-solving.

Accordingly, after finishing this chapter, you’ll be equipped with a basic set of Python tools that
will allow you explore computations in a much wider sense, including integers and fractions. In
the next chapter you will go to a higher level by understanding how to work with real numbers
in Python.

We will not rest in repeating that you should always keep in mind that a major goal of your
investment reading this book is (as an independent learner) to enhance your skills in applying
what you have learned to tackle new first (unfamiliar) met situations (not only in Prealgebra
course work but also in any other of the subjects in your educational track like Physics, Chem-
istry, Biology, Sociology, Psychology, and so on)). The successful acquisition of such desired
outcome requires your engagement in an effective learning involvement of constantly apply-
ing the programming stages of designing (actions), implementing (the actions in the required
order), and assessing (the performance of such actions) to any other real world situations.

5.2 Computing with integers in Python
Whole numbers, the ones studied in preceding chapter, covers only zero and numbers greater
than zero. As you know from daily language like “some degrees below zero,” or “some feet below
sea level” that whole numbers are a subset of a much wider set of numbers that needs to be
used to quantitatively represents the meaning of the referred expressions. This numbers are
the integers, which includes the sign plus (+) or minus (−) to represent respectively greater
than zero (positive) and less than zero (negative) numbers. The zero value is unsigned.

In symbols, for any integer number m, if it is negative it is represented using the relational
operator (<) in the form m < 0; for m positive, it is represented using the relational operator
(>) in the form m > 0; and for m zero, it is represented using the relational operator (=)
in the form m = 0 (recall that in programming the equal sign means assignment, while the
equality sign is represented by a double equal == sign). Another common representation is
given in terms of the symbols (≤) and (≥). Whenever m is less or equal to some other number
n is represented in the form m ≤ n. Whenever m is greater or equal to some other number n
is represented in the form m ≥ n. These representations in Python are expresses in the form
(<=), for less and equal to, and by (>=), for greater or equal to.

A positive number can be indicated by placing the plus sign (+) in front of the number, like
+4. Usually the sign is omitted and it is understood that the number is a positive number.
Any positive number is always greater than zero and it is said to lie at the right of zero on
the numbered line. A negative number is indicated by placing the negative sign (−) in front

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



171 Chapter 5: Integers and Fractions in Python

of the number, like −4. The sign for negative numbers must always be written. Any negative
number is always less than any positive number. Similarly, any negative number is always less
than zero and they are said to lie at the left of zero on the numbered line.

The following IPython session shows how to express this relations in Python:

In [1]: -5 >= 2
Out[1]: False

In [2]: -5 >= -4
Out[2]: False

In [3]: -2 > 0
Out[3]: False

In [4]: 2 > 0
Out[4]: True

In [5]: 5 > 4
Out[5]: True

In [6]: -2 == -2
Out[6]: True

In [7]: -2 == 2
Out[7]: False

In [8]:

Chapter 5, IPython session 1

5.2.1 Operations with integers

As in the case of whole numbers, the basic operations of addition, subtraction, multiplication,
division, and exponentiation are implemented in Python via the operators we are familiar with
from section 2.3, page 25. The following IPython session illustrates them:

In [1]: a = -2

In [2]: b = 29

Chapter 5, IPython session 2

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



172 Chapter 5: Integers and Fractions in Python

In [3]: c = - 5

In [4]: -a
Out[4]: 2

In [5]: -a == -1*a
Out[5]: True

In [6]: a + b + c == (a + b) + c
Out[6]: True

In [7]: a**3
Out[7]: -8

In [8]: a**(-3)
Out[8]: -0.125

In [9]: b // c
Out[9]: -6

In [10]: b % c
Out[10]: -1

In [11]: b / c
Out[11]: -5.8

In [12]: b*c
Out[12]: -145

In [13]: a*(b+c)
Out[13]: -48

In [14]: c
Out[14]: -5

In [15]: abs(c)
Out[15]: 5

In [16]:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



173 Chapter 5: Integers and Fractions in Python

Notice that on input cell In [15]: we have used the Python built-in function abs
[https://docs.python.org/3/library/functions.html#abs]. which is used
to make a negative number positive (it is equivalent to multiplying a negative number by
negative one, while leaving the number without change if it is positive). In other words,
the function abs is the pythonic way of getting the absolute value of any number. We
can use this function to guarantee that a given input is of the positive type required by
a program. For instance, since a distance or a length can never be a negative number,
we can use this function to ensure that it always happen that such a measurements are
always a positive number or zero.

From the operational point of view, you see that operating with integers implies to keep in
mind that they could take negative values.

By the way, you might remember that when working with Python list object negative integers
are used to to refer to elements in the list from right to left, being the index −1 the rightmost
element in the list. The following IPython session recalls the fact:

In [1]: alist = [0, 1, 2, 3, 4, 5]

In [2]: alist[5]
Out[2]: 5

In [3]: alist[-1]
Out[3]: 5

In [4]: alist[-2]
Out[4]: 4

In [5]: alist[-6]
Out[5]: 0

In [6]: alist[0]
Out[6]: 0

In [7]:

Chapter 5, IPython session 3

What follows is an IPython session on which we can check some properties of working with
integers:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



174 Chapter 5: Integers and Fractions in Python

In [11]: -12/-4
Out[11]: 3.0

In [12]: -12//-4
Out[12]: 3

In [13]: 12//-4
Out[13]: -3

In [14]: -12//4
Out[14]: -3

In [15]: -3*-4
Out[15]: 12

In [16]: 3*-4
Out[16]: -12

In [17]: -3*4
Out[17]: -12

In [18]: 2*(-3)*(-5)*(-7)
Out[18]: -210

In [19]:

Chapter 5, IPython session 4

5.2.2 The least common multiple (LCM) of natural numbers in
Python

A previous knowledge to work with fractions requires computing the least common multiple
(LCM) and the greatest common divisor (GCD) (also known as greatest common factor (GCF))
of a set of natural numbers (the later has been discussed in section 3.8.5, page 114). The
multiples of a number a are the values multiplying a by 1, 2, 3, and so forth. For example, the
multiples of 3 are 3× 1 = 3, 3× 2 = 6, 3× 3 = 9, 3× 4 = 12, etc.

A number that is a multiple of two or more numbers is a common multiple of those numbers.
This let to the idea that the least common multiple (LCM) is the smallest common multiple
of two or more natural numbers. For example the LCM of 3 and 5 is 15, and between 6 and
8 is 24. Recipes to computing the LCM can be given in terms of listing the factors of each
number and then finding the smallest factor common to each listing. Another alternative goes
by finding the prime factorization of each number and them taking as the LCM of them the

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



175 Chapter 5: Integers and Fractions in Python

product of the prime factors with the highest power that they appear. Instead of writing our
own program to do that, we will use SymPy already programmed function to do that.

Regarding the GCD (or GCF) of a set of numbers (section 3.8.5, page 114) let just recall that
it is is the largest common factor of two or more numbers (remember that a factor of a number
is any number that divides the former evenly. For instance the factors of 15 are the numbers
1, 3, 5, and 15).

SymPy contains functions to perform LCM and GCD of natural numbers:

In [9]: from sympy.core.numbers import ilcm

In [10]: ilcm?
Signature: ilcm(*args)
Docstring:
Computes integer least common multiple.
...
... extra output deleted
...
In [11]: ilcm(5, 10)
Out[11]: 10

In [12]: ilcm(7, 3)
Out[12]: 21

In [13]: ilcm(5, 10, 15)
Out[13]: 30

In [14]: from sympy.core.numbers import igcd

In [15]: igcd?
Signature: igcd(*args)
Docstring:
Computes nonnegative integer greatest common divisor.
...
... extra output deleted
...
In [16]: igcd(5, 10, 15)
Out[16]: 5

In [17]:

Chapter 5, IPython session 5

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



176 Chapter 5: Integers and Fractions in Python

You need to review your Prealgebra instructional notes to refresh your knowledge of these two
common devices (LCM and GCD/GCF). Make sure you understand the procedure to find them.
Remember that SymPy hides them from you. Exercise 5.5 (page 201) ask you to write and
implement an algorithm to compute the LCM of two or more natural numbers.

5.2.3 Solving equations nvolving integers via SymPy

As we did with whole numbers (page 119, we can use SymPy to solve equations whose solu-
tions can be any type of numbers, including integers. Consequently, after reading this section,
you might want to read also the corresponding sections about equations with whole numbers
(page 119), fractions (page 195), and decimals (page 230). You could also practice your skills
in solving equations via the one variable equation solver described on page 236.

Let’s start by posing the problem of finding the solution of:

7 = x+ 9 (5.1)

Surely your Prealgebra textbook has plenty of similar equations stated just like that, and
perhaps you might be wondering how can you get that (u other similar) equation in a real
world experience? After a while of talking with your classmates, you might ends up with a
word problem leading to equation 5.1 in the context of a real world experience imagining that
you have at home a black box with some stuff in it. One of your buddies comes to visit and
put 9 units of extra stuff in the black box, and by some measurement (perhaps by weighing the
black box using a lever balance) your buddy determined that such adding resulted in 7 units of
total stuff in the black box. Since you did know how much stuff were in the black box at the
beginning, you set up equation refchap05:eq:01 to find out how much stuff X was in the black
box initially.

A more realistic way of phrasing the problem is in a story involving a first grade class, were,
during the break period, two children mixed their toys of the same type. After the break time
is over, the teacher was helping the children to get back theirs toys. No much convincing, one
of them tells the teacher that he brought to the game 9 toys, while the other child smiling
with innocence happily tells the teacher that after mixing the toys they counted the toys and
found that only 7 toys were in the pile. The first child was OK with the recount of the second
child and even told the teacher how they were having fun counting the toys after mixing them.
The teacher knew there was a problem with their story, but wanted to use it to reinforce on
the children the sense of ordering. By calling x the number of unknown toys, the teacher ends
up with equation 5.1, which she applied with the toys to tell the children that something was
wrong with theirs counting stories.

As you can see, we can always find a context in which an equation could make sense. Perhaps
you could make up your own story to put this equation in another context. But let’s now see
how to find the solution of the equation via SymPy . Just keep in mind that SymPy will hide
from you how it finds the solution of the equation. Consequently, you are encourage to workout
the exercise following by hand (using pencil and paper) the procedures for solving equations

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



177 Chapter 5: Integers and Fractions in Python

presented in your Prealgebra course work. This way you will develop your intuition on whether
the solution found make or not sense and how to check it.

A piece of code solving this equation (which you can find under the name chap05_prog_01_
SympyWithIntegers.py in the directory named chapter_05 of the programs that comes
with this book, that you can download from the respective companion web site mentioned in
the Preface of this book) is as follows:

from sympy import symbols, Eq, solveset
x = symbols('x')

LHS = 7
RHS = x + 9

thesol = list( solveset( Eq(LHS, RHS), x) )
print('thesol =', thesol)

newLHS = LHS - RHS #rearrange the equation to read: LHS - RHS = 0
print('newLHS =', newLHS)

newLHS = newLHS.subs(x, thesol[0])
if newLHS.simplify() == 0:
print('The solution of {0} = {1}, is x =

{2}'.format(LHS,RHS,thesol[0]))

After executing these lines of code you’ll get:

$ python chap05_prog_01_SympyWithIntegers.py
thesol = [-2]
newLHS = -x - 2
The solution of 7 = x + 9, is x = -2

Chapter 5, System shell command 1

If you have trouble understanding this code, please go back and read section 3.9, starting on
page 119.

Coming back to the found solution, what in the world could be thinking the teacher after
getting this solution? Does it make sense in the case of the stuff interpretation in the black
box? What king of stuff the friends were dealing with? Could it be be raw potatoes? What
about smash potatos? Were they mixing up electrons and protons? Again, remember that

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



178 Chapter 5: Integers and Fractions in Python

after solving an equation one needs to make sense of the solution, we need to think if it make
or not sense.

To further enhance your programming skills, knowing that the solution is an integer, exercise 5.2
(page 201) ask you to write a program to find the solution of the equation 5.1 not using SymPy .

5.3 Fractions and how to represent them in Python
After dealing with whole numbers and integers, your next experience with our current numerical
system in your Prealgebra course work is with fractions, which you can think of dividing the
unity in portions (like when dividing your birthday cake).

Python provides at least two approaches to deal with fractions as an indicated (not performed)
division of the numerator and the denominator when the result is not an integer (like in 3/8).
One is via the module SymPy and the other is via the module fractions. We will show both
options, but we will work more on SymPy as it is the Python module for symbolic computations.
Working with fractions is a bit cumbersome, but we will get use to it.

Before continuing, let’s mention that we will not made distinction between proper and improper
fractions. Computationally, both are the same (check exercises 5.3--5.4, on page 201). Related
to this point, be aware that when SymPy receives a fraction, it is automatically simplified (or
reduced), performing the division of common factors between the numerator and denominator.

We have seen that Python has two special symbols for division: the standard (in Python3)
forward-slash (/) which performs the normal division operation between the numerator and
the denominator (as your are familiar with your calculator) and the double-forward slash (//)
which returns the integer part of dividing the numerator by the denominator. In standard
Python operations, when using those symbols we will get a number, as shown in the following
IPython session:

In [1]: 8/3
Out[1]: 2.6666666666666665

In [2]: 8//3
Out[2]: 2

In [3]: 3/8
Out[3]: 0.375

In [4]: 3//8
Out[4]: 0

Chapter 5, IPython session 6

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



179 Chapter 5: Integers and Fractions in Python

In [5]: 3/8 + 8/3
Out[5]: 3.0416666666666665

In [6]:

To work with fractions in the standard way as presented in the Prealgebra course work we need
to use either the SymPy module or the fractions module, but we need to define the numbers
in a special way to avoid that the indicated division be executed by the Python interpreter.

5.3.1 Representing fractions using sympy functions S and Rational

Let’s see how to represent fractions in SymPy :

In [6]: from sympy import S

In [7]: S('8')/S('3')
Out[7]: 8/3

In [8]: S('8')//S('3')
Out[8]: 2

In [9]: S('3')//S('8')
Out[9]: 0

In [10]: S('3')/S('8')
Out[10]: 3/8

In [11]: S('3')/S('8') + S('8')/S('3')
Out[11]: 73/24

In [12]: S('3')/18
Out[12]: 1/6

In [13]: 3/S('8')
Out[13]: 3/8

In [14]: 3./S('8')
Out[14]: 0.375000000000000

In [15]: (3./S('8')).n()

Chapter 5, IPython session 7

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



180 Chapter 5: Integers and Fractions in Python

Out[15]: 0.375000000000000

In [16]: a = 3/S('8')

In [17]: a
Out[17]: 3/8

In [18]: a.n()
Out[18]: 0.375000000000000

In [19]: a.p
Out[19]: 3

In [20]: a.q
Out[20]: 8

In [21]: from sympy import Rational

In [22]: b = Rational(3,8)

In [23]: b
Out[23]: 3/8

In [24]: a - b
Out[24]: 0

In [25]: type(a)
Out[25]: sympy.core.numbers.Rational

In [26]: type(b)
Out[26]: sympy.core.numbers.Rational

In [27]:

Let’s first notice that we need the special SymPy function S (called to the current computational
environment on input cell In [6]:). Second, at least one of the numerical values forming the
fraction must be represented as a string passed as argument to the function S (i.e S( 'number ')).
Third, the division symbols retains theirs meanings. Consequently, the forward slash symbol
is the one to use to operate with fractions. The input cells In [14]: and In [15]: shows
two alternatives to get the division performed in case we need it. The special method .n(), on
input cell In [15]:, is particularly useful when dealing variables, as shown on input cell In
[18]:. Defining fractions assigned to a variable seems to be the most affordable way to work
with fractions. Input cells In [19]: and In [20]: hows how to extract the numerator

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



181 Chapter 5: Integers and Fractions in Python

and denominator of a fraction. Input cells In [21]:--In [23]: show an alternative way
to represent fractions in SymPy via the Rational function, which in turns is equivalent (both
represent the same type of SymPy objects) to the way using the S function as seen from the
output of the function type (applied to the objects a and b) in cells Out[25]: and Out[26]:.

5.3.2 Representing fractions using the module fractions

Let’s now see how to represent fractions using the fractions module, and then we return with
SymPy to the rest of the chapter:

In [27]: from fractions import Fraction

In [28]: Fraction(8,3)
Out[28]: Fraction(8, 3)

In [29]: Fraction(8,3) + Fraction(3,8)
Out[29]: Fraction(73, 24)

In [30]: Fraction(8,3) + 3/S('8')
Out[30]: 73/24

In [31]: b = Fraction(8, 3)

In [32]: b
Out[32]: Fraction(8, 3)

In [33]: a
Out[33]: 3/8

In [34]: a + b
Out[34]: 73/24

In [35]: c = Fraction(3,8)

In [36]: b + c
Out[36]: Fraction(73, 24)

In [37]: type(c)
Out[37]: fractions.Fraction

In [38]: type(a)
Out[38]: sympy.core.numbers.Rational

Chapter 5, IPython session 8

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



182 Chapter 5: Integers and Fractions in Python

In [39]: type(b)
Out[39]: fractions.Fraction

In [40]: c = a + b

In [41]: c
Out[41]: 73/24

In [42]: type(c)
Out[42]: sympy.core.numbers.Rational

In [43]:

As you can see, the functionality of the module fractions provides the function Fraction which
take as argument the numerator and the denominator that forms the fraction we want to wok
with. Results of operations are returned in the same representation of Fraction, unless mixed
with the SymPy way of defining fractions. As shown on output cells Out[30]:, Out[34]:,
and Out[41]: the result returned ha been changed to the SymPy representation. In other
words, when mixing Fraction type objects with the SymPy representation of fractions, the re-
sulting object is a SymPy Rational object. This can be seen explicitly on output cell Out[42]:.
We will not use the module fractions beyond this section.

5.4 Computing with fractions in Python
As already mentioned, we will stick with the way of representing fractions in Python via the
SymPy module using the representation using the S function presented in the previous section.
From your Prealgebra course work you know that the operations defined on integers are also
defined on fractions, which are numbers represented as an indicated (not executed) division of
two integers (i.e. a/b = a

b
, b 6= 0) on which now the dividend a is called the numerator, while

the divisor b is called the denominator. Neither the quotient and the remainder are computed
as the operation of dividing the numbers is not executed. Nevertheless, when computing with
fractions, we need to have a sense of the result. If the numerator is greater than the denominator,
the result (quotient) will be greater than one. Otherwise, the result will be less than one. This
knowledge can also be used when deciding about the result of multiplying or dividing by
numbers greater or less than one. We let you use Python to reinforce what you have learned so
far on this sort of numerical operations. Keep in mind that no matter what numbers you use,
dividend = quotient× divisor + remainder.

As you have study in your Prealgebra course work, the basic operations of addition, subtraction,
multiplication, division, and exponentiation with fractions has special rules to be followed to do
them correctly. We will use the symbolic capabilities of SymPy to illustrate them. You might

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



183 Chapter 5: Integers and Fractions in Python

read the following sections with extra profit if you refresh on your mind these operations. If
you still have not study them in your Prealgebra course work, don’t worry. They will make
sense.

Before continuing, let’s comment the preamble of a typical SymPy session to perform symbolic
simplification of expressions.

In [1]: from sympy import symbols

In [2]: from sympy import together, factor, collect, expand, simplify,
expand

In [3]: collect?
Signature: collect(expr, syms, func=None, evaluate=None, exact=False,

distribute
_order_term=True)
Docstring:
Collect additive terms of an expression.

This function collects additive terms of an expression with respect
to a list of expression up to powers with rational exponents.
...
...
...
In [4]:

Chapter 5, IPython session 9

On input cell In [2]: the SymPy functions together, factor, collect, expand, and simplify are
made available into the current Python computational environment. You might read about
them in the SymPy documentation, listed in the reference section at the end of the chapter
(page 203) or reading the inline documentation by executing in any IPython input cell the
instruction formed by the name of the function followed by the question mark symbol (i.e.
collect?) as shown on input cell In [3]:.

A brief description of these (and a few other) SymPy functions is as follows:

• together: this function combines the given expression into a single fraction by denesting
and combining rational subexpressions.

• factor: this function computes the factorization of the given expression.
• collect: this function collects additive terms of an expression with respect to a list of

expression up to powers with rational exponents.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



184 Chapter 5: Integers and Fractions in Python

• expand: this function expands the given expression, expressing it as a sum of individual
terms.

• simplify: this function via a set of sophisticated symbolic manipulation functions at-
tempts to arrive at the simplest form of the given expression.

• sympify: this function Converts an arbitrary expression to a type that can be used inside
SymPy . It is very useful to read any collection of symbols entered via the keyboard as
strings which are them translated by sympify as valid SymPy expression.

• nsimplify: this function finds a simple representation for a number, converting (by
default) Floats to Rationals.

• S: this function helps to define numerical fractions (rational numbers) in SymPy . For
instance, to have 3/4 we could write any of the following: S(′3′)/S(′4′), S(′3′)/4, or
3/S(′4′).

• Eq: this function is used to represent that two objects are equal. It is helpful in defining
an equation, receiving as argument the left and right hand side of the equation.

• symbols: this function Transform an string into a SymPy symbol of the same name as
the given string.

• solveset: this function Solves a given inequality or equation with a set as output.

We will use these functions to operate with fractions and to perform symbolic polynomial
operations later in the book.

5.4.1 Addition of fractions

The following IPython session illustrates general symbolic computation with the addition of
fractions:

In [1]: from sympy import symbols

In [2]: from sympy import together, factor, collect, expand, simplify,
expand

In [3]: a, b, c, d = symbols ('a, b, c, d')

In [4]: u = a/b + c/d

In [5]: u
Out[5]: a/b + c/d

In [6]: u = together(u)

In [7]: u

Chapter 5, IPython session 10

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



185 Chapter 5: Integers and Fractions in Python

Out[7]: (a*d + b*c)/(b*d)

In [8]:

On input cell In [4]: we entered the addition of two generic fractions a/b (b 6= 0) and c/d
(d 6= 0). Output cell Out[5]: shows that SymPy does not automatically combine symbolic
fractions (we will see shortly that it does so if numbers are used). To combine the symbolic
fractions, in this case using the function together does the operation. From input cell Out[5]:
and Out[7]: you might recognize the general result from your Prealgebra course work for
adding fractions, summarized in the equation:

a

b
+
c

d
=

1

bd
(ad+ bc)

ad+ bc

bd
, b 6= 0 and d 6= 0. (5.2)

The particular case when b = d can be readily obtained from this relation as follows:

In [8]: u.subs(d,b) # in the u expression changes d by b
Out[8]: (a*b + b*c)/b**2

In [9]: simplify(Out[8])
Out[9]: (a + c)/b

In [10]:

Chapter 5, IPython session 11

On input cell In [8]: we applied the method subs to replace d by b in the existing expression
of u. After doing the replacing, SymPy does not perform the obvious simplification unless it is
instructed to do so via the simplify function on input cell In [9]:. Now you might recognize
the result stated in your Prealgebra course work:

a

b
+
c

b
=
a+ c

b
, b 6= 0. (5.3)

Both results satisfy the rule that before fractions can be added, the fractions must have the same
denominator. To add fractions with different denominators, we first rewrite the fractions as
equivalent fractions with a common denominator, which is taken as the least common multiple
(LCM) of the denominators of the fractions.

Let’s now see some numerical examples (keep in mind that SymPy will always simplify your
given numerical fractions to its simplest form):

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



186 Chapter 5: Integers and Fractions in Python

In [10]: from sympy import S

In [11]: S('3')/6 + 7/6 + 5/6 # this way Python uses standard division
Out[11]: 2.50000000000000

In [12]: S('3')/6 + S('7')/6 + S('5')/6
Out[12]: 5/2

In [13]: S('3')/6 + S('7')/3 + S('5')/8
Out[13]: 83/24

In [14]: a = S('3')/6 ; b = S('7')/3 ; c = S('5')/8

In [15]: a + b + c
Out[15]: 83/24

In [16]:

Chapter 5, IPython session 12

We let you to study and understand the previous IPython session at your own peace. By the
way, we can also use relational operators on fractions:

In [16]: a
Out[16]: 1/2

In [17]: b
Out[17]: 7/3

In [18]: c
Out[18]: 5/8

In [19]: a > c
Out[19]: False

In [20]: a == c
Out[20]: False

In [21]: b > a
Out[21]: True

Chapter 5, IPython session 13

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



187 Chapter 5: Integers and Fractions in Python

In [22]: b > c
Out[22]: True

In [23]: S('2')/4 == S('8')/16
Out[23]: True

In [24]:

5.4.2 Subtraction of fractions

The following IPython session illustrates general symbolic computation with the subtraction of
fractions:

In [1]: from sympy import symbols

In [2]: from sympy import together, factor, collect, expand, simplify,
expand

In [3]: a, b, c, d = symbols ('a, b, c, d')

In [4]: u = a/b - c/d

In [5]: u
Out[5]: a/b - c/d

In [6]: u = together(u)

In [7]: u
Out[7]: (a*d - b*c)/(b*d)

In [8]:

Chapter 5, IPython session 14

On input cell In [4]: we entered the subtraction of two generic fractions a/b (b 6= 0) and c/d
(d 6= 0). Output cell Out[5]: shows that SymPy does not automatically combine symbolic
fractions (we will see shortly that it does so if numbers are used). To combine the symbolic
fractions, in this case using the function together does the operation. From input cell Out[5]:
and Out[7]: you might recognize the general result from your Prealgebra course work for the
subtraction of fractions, summarized in the equation:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



188 Chapter 5: Integers and Fractions in Python

a

b
− c

d
=

1

bd
(ad− bc) ad− bc

bd
, b 6= 0 and d 6= 0. (5.4)

The particular case when b = d can be readily obtained from this relation as follows:

In [8]: u.subs(d,b) # in the u expression changes d by b
Out[8]: (a*b - b*c)/b**2

In [9]: simplify(Out[8])
Out[9]: (a - c)/b

In [10]:

Chapter 5, IPython session 15

On input cell In [8]: we applied the method subs to replace d by b in the existing expression
of u. After doing the replacing, SymPy does not perform the obvious simplification unless it is
instructed to do so via the simplify function on input cell In [9]:. Now you might recognize
the result stated in your Prealgebra course work:

a

b
− c

b
=
a− c
b

, b 6= 0. (5.5)

Both results satisfy the rule that to subtract fractions, the fractions must have the same de-
nominator. To subtract fractions with different denominators, we first rewrite the fractions as
equivalent fractions with a common denominator, which is taken as the least common multiple
(LCM) of the denominators of the fractions.

Let’s now see some numerical examples (keep in mind that SymPy will always simplify your
given numerical fractions to its simplest form):

In [10]: from sympy import S

In [11]: S('3')/6 - S('5')/6
Out[11]: -1/3

In [12]: S('7')/3 - S('5')/6
Out[12]: 3/2

Chapter 5, IPython session 16

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



189 Chapter 5: Integers and Fractions in Python

In [13]: - S('7')/3 - S('5')/6
Out[13]: -19/6

In [14]: a = -S('3')/6 ; b = S('7')/3 ; c = -S('5')/8

In [15]: a + b - c
Out[15]: 59/24

In [16]: S('5')/12 - S('3')/8
Out[16]: 1/24

In [17]:

We let you to study and understand the previous IPython session at your own peace.

5.4.3 Multiplication of fractions

The following IPython session illustrates general symbolic computation with the Multiplication
of fractions:

In [1]: from sympy import symbols

In [2]: a, b, c, d = symbols ('a, b, c, d')

In [3]: u = a/b * c/d

In [4]: u
Out[4]: a*c/(b*d)

In [5]:

Chapter 5, IPython session 17

On input cell In [3]: we entered the multiplication of two generic fractions a/b (b 6= 0)
and c/d (d 6= 0). On output cell Out[4]: you might recognize the general result from your
Prealgebra course work for the multiplication of fractions, summarized in the equation:

a

b
× c

d
=
ac

bd
, b 6= 0 and d 6= 0. (5.6)

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



190 Chapter 5: Integers and Fractions in Python

The result satisfy the rule that to multiply fractions, multiply the numerators and multiply the
denominators.

SymPy automatically recognize that a is the inverse of 1/a:

In [5]: a*(1/a)
Out[5]: 1

In [6]: (1/a)*a
Out[6]: 1

In [7]:

Chapter 5, IPython session 18

Let’s now see some numerical examples (keep in mind that SymPy will always simplify your
given numerical fractions to its simplest form):

In [7]: from sympy import S

In [8]: S('3')/8 * S('16')/9
Out[8]: 2/3

In [9]: -S('3')/8 * S('16')/9
Out[9]: -2/3

In [10]: -S('3')/8 * -S('16')/9
Out[10]: 2/3

In [11]: -S('3')/8 * (-S('16')/9)*-S('3')/4
Out[11]: -1/2

In [12]: S('3')/8 * 16/9
Out[12]: 2/3

In [13]:

Chapter 5, IPython session 19

We let you to study and understand the previous IPython session at your own peace.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



191 Chapter 5: Integers and Fractions in Python

5.4.4 Division of fractions

The following IPython session illustrates general symbolic computation with the Division of
fractions:

In [1]: from sympy import symbols

In [2]: a, b, c, d = symbols ('a, b, c, d')

In [3]: u = (a/b) / (c/d)

In [4]: u
Out[4]: a*d/(b*c)

In [5]:

Chapter 5, IPython session 20

On input cell In [3]: we entered the division of two generic fractions a/b (b 6= 0) and c/d
(d 6= 0). On output cell Out[4]: you might recognize the general result from your Prealgebra
course work for the division of fractions, summarized in the equation:

(a
b

)
/
( c
d

)
=

a
b
c
d

=
ad

bc
, b 6= 0 c 6= 0 and d 6= 0. (5.7)

The result satisfy the rule that to divide two fractions, multiply by the reciprocal of the divisor:

In [5]: ur = (a/b) * 1/(c/d)

In [6]: ur
Out[6]: a*d/(b*c)

In [7]: ur == u
Out[7]: True

In [8]:

Chapter 5, IPython session 21

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



192 Chapter 5: Integers and Fractions in Python

Let’s now see some numerical examples (keep in mind that SymPy will always simplify your
given numerical fractions to its simplest form):

In [8]: from sympy import S

In [9]: ( S('3')/8 ) / ( S('16')/9 )
Out[9]: 27/128

In [10]: (-S('3')/8 ) / ( S('16')/9 )
Out[10]: -27/128

In [11]: (-S('3')/8) / (-S('16')/9)
Out[11]: 27/128

In [12]: (-S('3')/8) / 16
Out[12]: -3/128

In [13]: ( a/S('3') ) / ( b/S('9') )
Out[13]: 3*a/b

In [14]:

Chapter 5, IPython session 22

We let you to study and understand the previous IPython session at your own peace.

5.4.5 Exponential operations with fractions

When working with powers of numerical values, SymPy will do it correctly. When working
with symbols, you need to be aware of the type of values the symbols could take.

Exponentiation rules of specific validity are as follows (this does not mean that these are the
only cases on which these rules are true):

xaxb = xa+b for all real x, a, b (5.8)
xaya = (xy)a x, y ≥ 0 and a real. (5.9)
(xa)b = xa b for all real x, a, and b any integer. (5.10)

Let’s see how to get them in SymPy , which provides a special function powsimp to handle
powers:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



193 Chapter 5: Integers and Fractions in Python

In [1]: from sympy import symbols, powsimp

In [2]: x, y = symbols('x, y', positive=True)

In [3]: a, b = symbols('a, b', real=True)

In [4]: u = x**a*x**b

In [5]: u
Out[5]: x**a*x**b

In [6]: powsimp(u)
Out[6]: x**(a + b)

In [7]: u = x**a*y**a

In [8]: u
Out[8]: x**a*y**a

In [9]: powsimp(u)
Out[9]: (x*y)**a

In [10]: u = (x**a)**b

In [11]: u
Out[11]: x**(a*b)

In [12]:

Chapter 5, IPython session 23

These lines of code explains what they do on their own. We let you to follow them on your
own. The SymPy tutorial contains a thorough discussion of the function powsimp. Let’s now
turn to exponentiation in fractions:

In [1]: from sympy import symbols, powsimp, expand

In [2]: x, y = symbols('x, y', positive=True)

In [3]: a, b, c, d = symbols('a, b, c, d', real=True)

Chapter 5, IPython session 24

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



194 Chapter 5: Integers and Fractions in Python

In [4]: u = (x/y)**a

In [5]: u
Out[5]: (x/y)**a

In [6]: powsimp(u)
Out[6]: (x/y)**a

In [7]: expand(u)
Out[7]: x**a*y**(-a)

In [8]: u = (x/y)**a * (x/y)**b

In [9]: u
Out[9]: (x/y)**a*(x/y)**b

In [10]: powsimp(u)
Out[10]: (x/y)**(a + b)

In [11]: u = (x/y)**a * x**b

In [12]: u
Out[12]: x**b*(x/y)**a

In [13]: powsimp( expand(u) )
Out[13]: x**(a + b)*y**(-a)

In [14]:

We let you to continue exploring how SymPy handle other symbolic expressions. In particular,
try using numerical values in the exponent. Let’s turn now to numerical fractions:

In [1]: from sympy import S

In [2]: u = S('3')/4

In [3]: u
Out[3]: 3/4

Chapter 5, IPython session 25

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



195 Chapter 5: Integers and Fractions in Python

In [4]: v = S('5')/7

In [5]: u**2*v**3
Out[5]: 1125/5488

In [6]: (u/v)**2
Out[6]: 441/400

In [7]: (u/v)**2*((u/v)**(-2))
Out[7]: 1

In [8]: (u/v)**2*((v/u)**2)
Out[8]: 1

In [9]:

We encourage you to try the examples of your course work to become more familiar on how
SymPy performs exponentiation. For further discussion of this subject read the tutorial listed
on the reference section (page 203).

5.4.6 Solving equations involving fractions via SymPy

As we did with whole numbers 3.9 (page 119) and integers 5.2.3 (page 176), we can also use
SymPy to solve equations containing fractions and (in case a non-integer solution is obtained)
get the solution expressed as a fraction. After reading this section, you will find instructive to
re-read sections about equations with whole numbers (page 119) and integers (page 176), and
read the section about equations with decimals (page 230). You could also practice your skills
in solving equations via the one variable equation solver described on page 236

Let’s show it by finding the solution of:

7

2
= 5x+ 9 (5.11)

Surely your Prealgebra textbook has plenty of similar equations stated just like that. In the
previous sections about equations, we have stressed the fact that whenever you try to solve an
equation, you need to spent sometime thinking about what that equation could represent. In
section 5.2.3 (page 176) about solving equations with integers we gave some ideas on how you
can rephrase the wording presenting equation 5.1 (page 195) to make it look as if it were the
result of a word problem. You were able to see that the same equation could be assigned to more
than one word problem representing different situations. What makes unique the problems is
the meaning of the equations in each respective context: perhaps negative solutions are not

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



196 Chapter 5: Integers and Fractions in Python

allowed in a particular case; perhaps the point of interest in another case is in the set of numbers
greater than the one that solve the equation. The are plenty of possibilities. You named it!.
The point is that one need to look at equations beyond the usual “find the solution of · · · ”
and think of the equations in your Prealgebra course works with those that you see in your
Physics, Biology, Chemistry, subjects. Go beyond to simple learning the methods to solve it.
As excite as interesting this discussion might be, we need to continue with our subject of finding
the solution of the posed equation. You are encourage to check the references at the end of
Chapter 3, starting on page 144.

Just keep in mind that SymPy will hide from you how it finds the solution of the equation.
Consequently, you are encourage to workout the exercise following by hand (using pencil and
paper) the procedures for solving equations presented in your Prealgebra course work. This
way you will develop your intuition on whether the solution found make or not sense and how
to check it.

A piece of code solving this equation (which you can find under the name chap05_prog_02_
Sympy_SolEquation.py in the directory named chapter_05 of the programs that comes
with this book, that you can download from the respective companion web site mentioned in
the Preface of this book) is as follows:

from sympy import symbols, Eq, solveset, S
x = symbols('x')

LHS = S('7')/2
RHS = 5*x + 9

thesol = list( solveset( Eq(LHS, RHS), x) )
print('thesol =', thesol)

newLHS = LHS - RHS #rearrange the equation to read: LHS - RHS = 0
print('newLHS =', newLHS)

newLHS = newLHS.subs(x, thesol[0])
if newLHS.simplify() == 0:
print('The solution of {0} = {1}, is x =

{2}'.format(LHS,RHS,thesol[0]))

After executing these lines of code you’ll get:

$ python chap05_prog_02_Sympy_SolEquation.py
thesol = [-38/25]

Chapter 5, System shell command 2

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



197 Chapter 5: Integers and Fractions in Python

newLHS = -5*x - 38/5
The solution of 7/5 = 5*x + 9, is x = -38/25

If you have trouble understanding this code, please go back and read section 3.9, starting on
page 119.

Notice that the trick to get the solution expressed as a rational number is to, at least, write one of
the numbers in the equation (no matter which one) using the SymPy S function. Nevertheless,
to avoid obtaining weird results because of unexpected changes in the future from the SymPy
developers (as those make by the Python developers every time they release a major Python
version, breaking stright forward portability across Python version), you can write all of the
constants in your equation using the S function.

At this point, you have know the knoeledge of fractions which can help you start trying solutions
to more complicated equations, whose solution are more general than integers. You can write
the numbers in the equation as fractions in order to find the solution expressed in terms of a
fraction. We hope you enjoy the the end of this trip finding solutions of end of chapter exercises
in your Prealgebra textbook.

To help you in this endeavour, we are including a code for solving any one variable equation
(which you can find under the name chap05_prog_03_Sympy_SolInputEquation.py,
in the directory named chapter_05 of the programs that comes with this book, that you can
download from the respective companion web site mentioned in the Preface of this book).

We let you read and understand the code at your own peace, the listing of which is shown
in figure 5.1, on page 199. In the next chapter we will study how to represent real values in
Python, which will explain the use of line of code 57.

Here is a sample of executing it:

$ python chap05_prog_03_Sympy_SolInputEquation.py
Enter the variable name (i.e. x, y, z): x

*=========

* Input the part of your equations as requested

* If your equation looks like: (3/2)x - 8 = 7x + 5

* LHS = (3/2)x - 8, and you should enter for it: (3/2)*x - S('8')

* RHS = 7x + 5, and you should enter for it: 7*x + S('5')

* If you write your equation in a text editor, copy and paste might
work.

*=========
Enter the LHS of the equation: (3/2)*x - S('8')

You entered LHS = (3/2)*x - S('8')

Chapter 5, System shell command 3

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



198 Chapter 5: Integers and Fractions in Python

Enter the LHS of the equation: 7*x + S('5')
You entered RHS = 7*x + S('5')

Solution(s) of 3*x/2 - 8 = 7*x + 5:
x = -26/11

We find it instructive (see also exercise 5.6, on page 201) to show a sample running the code
using an equation containing real values on the entered equation (this explains the use of line
of code 57):

$ python chap05_prog_03_Sympy_SolInputEquation.py
Enter the variable name (i.e. x, y, z): z

*=========

* Input the part of your equations as requested

* If your equation looks like: (3/2)z - 8 = 7z + 5

* LHS = (3/2)z - 8, and you should enter for it: (3/2)*z - S('8')

* RHS = 7z + 5, and you should enter for it: 7*z + S('5')

* If you write your equation in a text editor, copy and paste might
work.

*=========
Enter the LHS of the equation: 5.0*z**3 - 4.0*z + 8.0

You entered LHS = 5.0*z**3 - 4.0*z + 8.0
Enter the LHS of the equation: 0

You entered RHS = 0
Solution(s) of 5.0*z**3 - 4.0*z + 8.0 = 0:

z = -1.39525701255756

z = 0.697628506278782 - 0.812438673573761*I

z = 0.697628506278782 + 0.812438673573761*I

Chapter 5, System shell command 4

Let’s end this section mentioning that, in general, when finding numerical solution to equations,
we might need to use other Python alternatives better suitable than SymPy , like SciPy .

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



199 Chapter 5: Integers and Fractions in Python

Figure 5.1: Program to find solutions to any one variable equation via SymPy .Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



200 Chapter 5: Integers and Fractions in Python

5.5 Chapter Summary
Ending this chapter you have done great! By know you know how to handle computational
operations of your Prealgebra involving integers and rational numbers. We learned about
the S function from SymPy (and about the Fraction from the module fractions) to properly
represent fractions in Python. You also did some algebraic symbolic operations (as well as
numerical ones) with equations involving integers and rational numbers, ending the chapter
with a general program to find numerical solutions to any one variable equation.

In the next chapter we will learn about the fundamental aspects of representing real numbers
in Python and how to perform computations with them.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Exercises of Chapter 5
Exercise 5.1 Find the mean, median, and mode of the following set of values:

TheValues = [-70, 50, -100, 0, 70, 50, -30, 8, -50, 90, 110, 40, -50]

Exercise 5.2 Knowing that the solution is an integer, write a program to find the solution of
the the equation 5.1 (page 176) without using SymPy. You need o write a recipe (algorithm),
implement, and test it (for that, one way to go is thinking in defining and interval on which
the solution can be found and in the bisection method to search for it).

Exercise 5.3 Write an algorithm to find the mixed number representation of an improper frac-
tion. Implement the algorithm in Python and write a few test cases.

Exercise 5.4 Write an algorithm to find the improper fraction representation of a mixed num-
ber. Implement the algorithm in Python and write a few test cases.

Exercise 5.5 Write an algorithm to find the least common factor (LCD) of two or more natural
numbers (you could do it by listing the multiples of the numbers). Implement the algorithm in
Python and write a few test cases. (you might one to reread our algorithm to find the greatest
common divisor of a set of whole numbers discussed on section 3.8.5, page 114).

Exercise 5.6 Execute the code of figure 5.1, page 199 to find the solution of 5z3 − 4z + 8 = 0
by entering (after z as variable) one of the following in each run:

LHS = 5*z**3 - 4*z + 8
LHS = 5*z**3 - 4*z + S('8')
LHS = 5*z**3 - 4*z + 8.0
RHS = 0

Explain what you notice (including the executing time).

201



202 Exercises of Chapter 5

Exercise 5.7 Improve the code of figure 5.1, page 199 to properly handle wrong input of the
variable.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



References of Chapter 5

Books and/or Articles
• Marecek, L. and Smith, M. A. (2017). Prealgebra, Rice University, OpenStax
https://openstax.org.
Book available for free at: http://cnx.org/content/col11756/1.9

•

References on the WEB
• Python tutorial:
https://docs.python.org/3/tutorial/index.html

• SymPy tutorial:
http://docs.sympy.org/latest/tutorial/index.html

203



6

Decimal numbers in Python
“God made the natural numbers; all the rest is the work of man.”

Leopold Kronecker

6.1 Introductory remarks
We have study integers (which includes whole numbers) and fraction representation of numbers
in Python. We learned that Python deals directly with integers using infinity precision, meaning
that we can carry out precise computations with integer values (no matter how big they could
be) in Python. Integers are represented as objects of type int in Python. We also learned that
to deal with fractions (as an indicated division between two integers) we need to use the special
function S from the module SymPy (or the function Fraction from the module fractions). Via
either functions (though we will stick with the S function), we can perform infinity precision
computations with fractions. For SymPy , fractions are represented as objects of type Rational.

We know turns to the study of real numbers and its operations in python. This will allow us to
wider our use of Python instructions to write more complex programs as we can know execute
computations mixing the different type of numbers we are familiar with. As learned in your
Prealgebra course work, just keep in mind that some computations have sense in a particular
numerical system. For instance, when forming study groups in your classroom, each group
must have a positive integer as the number of individuals forming the group. Each group is a
fraction of the total class size, which in turn is a positive integer.

In reading this chapter, you are suppose to have read and (surely you had) understood the
preceding chapters as we will using in here basically all of the Python instructions we introduced
in these preceding chapters. We will also include a few new Python built in functions as we
need them to deal with the real numbers.

To be specific, in this chapter we will give a lengthy discussion in working with real numbers
in Python. So, take your shoes off and open your mind to see some unusual behavior when
computing using real number representations in any computer.

After finishing this chapter, you’ll be equipped with a almost complete functional set of Python
tools that will allow you explore computations in a much wider sense. Graphing of the results
will be left to the next chapter.

We will not rest in repeating that you should always keep in mind that a major goal of your

204



205 Chapter 6: Decimal numbers in Python

investment reading this book is (as an independent learner) to enhance your skills in applying
what you have learned to tackle new first (unfamiliar) met situations (not only in Prealgebra
course work but also in any other of the subjects in your educational track like Physics, Chem-
istry, Biology, Sociology, Psychology, and so on)). The successful acquisition of such desired
outcome requires your engagement in an effective learning involvement of constantly apply-
ing the programming stages of designing (actions), implementing (the actions in the required
order), and assessing (the performance of such actions) to any other real world situations.

6.2 Computing with decimal numbers in Python
As learned in your Prealgebra course work, decimal numbers are written following the notation
of a signed integer followed by a dot followed by a whole number (representing the decimal
part) like 23.98, 5.2345, and 345.98765001. Some usual representations for decimals uses the
power of ten notation. You might be familiar with the scientific notation, in which decimals are
represented in the form d1.d2d3d4· · ·dkdk+1· · · × 10m, where d1 6= 0 and 0 ≤ di ≤ 9. Example
are 1.08, −1.05, 1.3̄, etc. You certainly have been using such representations when performing
computations in your calculator, becoming familiar with the fact that in the computer, however,
decimals are represented using only a finite number of digits, given rise to the so called finite
digit arithmetic, whose consequences (perhaps already known by you) will be mentioned shortly.

Decimal numbers are represented in Python as float objects (from the floating number represen-
tation) which, in essential, is (contrary to integers and fractions) an approximated represen-
tation of these numbers in the computer. This comes from the fact that (generally) computers
uses the binary (or base two) system to represent numbers. For decimals, this internal repre-
sentation is organized such that the given decimal number is converted into binary where (in
general) the fractional part is truncated to a fixed length in bits following the IEEE 754 binary
floating point standard representation. In Python this standard defaults to the 64 bit represen-
tation. This means that every number must fit into 64 binary digits of storage, meaning that
there can not be more than 264 ≈ 1019 distinct decimal numbers represented in the computer in
the form sign×mantissa×2exponent, wheremantissa takes 52 bits of precision and the exponent
(also called the characteristic) 11 bits. An in depth discussion on how numbers are represented
in the computer will take us beyond the Prealgebra topics. Please, check out the references at
the end of the chapter (page ) for extra details in this fascinating subject.

In practical operational terms, the 64 bits representation allows upto 15 digits of precision
to represent a minimal absolute value of about 2−1023 ≈ 10−308 and the maximum value of
about 2+1023 ≈ 10+308. The exact values for your system can be obtained executing the com-
mands:

In [1]: import sys

Chapter 6, IPython session 1

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



206 Chapter 6: Decimal numbers in Python

In [2]: sys.float_info.dig
Out[2]: 15

In [3]: sys.float_info.min
Out[3]: 2.2250738585072014e-308

In [4]: sys.float_info.max
Out[4]: 1.7976931348623157e+308

In [5]: sys.float_info.epsilon # is the smallest 52-bits mantissa 2.0**(-52)
Out[5]: 2.220446049250313e-16

In [6]:

The variable sys.float_info contains more information about the internal representation
of the Python object float on your machine If you want the full listing contained in the variable
sys.float_info, just execute the following lines of code:

import sys
u = str(sys.float_info).split(')')[0].split('(')[1].split(',')
for val in u:
print(val)

The fact that only a subset of the decimal numbers can be represented in the computer put a
strong limitation on the computations we can do using numbers outside the range range. But
we have even more restrictions when computing with the allowed decimals as the computer can
not represent them with infinity precision. Nevertheless, with such limitations, the computer
helps to send rockets to the space, to have satellites for communications, to have video games,
and so many other things around our technological world. The main point here is that when
using the computer, we need to be aware of its limitations in terms of computing with decimals.
A few of which are presented below, in section 6.2.3, page 211.

6.2.1 Operations with decimals

As in the previous cases of integers and fractions, the basic operations of addition, subtraction,
multiplication, division, and exponentiation with decimals are implemented in Python via the
operators (+, −, ∗, /, and ∗∗) we are familiar with from section 2.3, page 24. The following
IPython session illustrates them:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



207 Chapter 6: Decimal numbers in Python

In [1]: a = -2.208

In [2]: b = 29.786

In [3]: c = - 5.675432

In [4]: a + b + c
Out[4]: 21.902568000000002

In [5]: a*b + c
Out[5]: -71.44292000000002

In [6]: a/b
Out[6]: -0.07412878533539247

In [7]: (c*b)/a
Out[7]: 76.5617833115942

In [8]: a**3
Out[8]: -10.764582912000003

In [9]: a**2
Out[9]: 4.8752640000000005

In [10]: a**c
Out[10]: (0.005843891513628068+0.009507377106479155j)

In [11]: abs(a*b + c)
Out[11]: 71.44292000000002

In [12]: (2**(0.5))**2
Out[12]: 2.0000000000000004

In [13]: (2.**2)**(0.5)
Out[13]: 2.0

In [14]: (1.0/49.0)*49.0
Out[14]: 0.9999999999999999

In [15]:

Chapter 6, IPython session 2

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



208 Chapter 6: Decimal numbers in Python

Notice that some operations does not returns the expected result as in output cells
Out[12]: and Out[14]:. These kind of errors are consequence of the finite num-
ber arithmetic that any computer uses to operate with decimals, and are called round-off
errors. When operating with decimals, you need to be aware of this sort of errors.

Before discussing some nuances of working with the finite number arithmetic of the computer,
in the next section we will introduce a way to quantify its approximation errors.

6.2.2 Relative error: a way to quantify round-off errors (optional)

As mentioned, the finite representation of decimal numbers in the computer introduces round-
off errors which, eventually, we would like to quantify. A commonly used measure is called
the relative error defined as follows: let N exact be the exact number which is represented in
the computer by the number Napprox containing less digits than N exact, then the {emphrelative
error (RE) is defined as:

RE =

∣∣∣∣
N exact −Napprox

N exact

∣∣∣∣ , (6.1)

where he vertical bars means absolute value (the RE is always a positive number).

As illustrative example, let’s consider that we have the number N exact = 5/3, which, via
chopping or truncation, could be represented to three decimal digits Napprox = 1.666. The same
number could also be approximated, via rounding, to three decimal digits Napprox = 1.667. The
RE for each approximation is:

REtruncating =

∣∣∣∣
5
3
− 1666

1000
5
3

∣∣∣∣ =
1

2500
= 0.0004 (6.2)

RErounding =

∣∣∣∣
5
3
− 1667

1000
5
3

∣∣∣∣ =

∣∣∣∣−
1

5000

∣∣∣∣ = 0.0002 (6.3)

We see that rounding (in this case) gives a smaller error that truncating. To have a better
sense of what this relative error means, we can compute the percentage of the actual number
that this error represents. This quantity is computed in the form (RE/N exact)× 100.

In the case of REtruncating, this error is 0.024%. You are left as an exercise to compute this
quantity for RErounding.

These approximations could have been computed using SymPy as follows (in these computations
the only new operations are the way how we get the rounded and truncated approximations of
5/3 in, respectively, input cells In [6]: and In [12]:, and the use of the SymPy function
nsimplify to convert a Python float object into a SymPy Rational object):

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



209 Chapter 6: Decimal numbers in Python

In [1]: from sympy import S, N, nsimplify

In [2]: a = S(5)/3

In [3]: a
Out[3]: 5/3

In [4]: type(a)
Out[4]: sympy.core.numbers.Rational

In [5]: N(a)
Out[5]: 1.66666666666667

In [6]: a_approx_round = float(str(N(a,4)))

In [7]: a_approx_round
Out[7]: 1.667

In [8]: type(a_approx_round)
Out[8]: float

In [9]: a_approx_round = nsimplify( a_approx_round )

In [10]: a_approx_round
Out[10]: 1667/1000

In [11]: type(a_approx_round)
Out[11]: sympy.core.numbers.Rational

In [12]: a_approx_trunc = float(str(N(a))[0:5])

In [13]: a_approx_trunc
Out[13]: 1.666

In [14]: type(a_approx_trunc)
Out[14]: float

In [15]: a_approx_trunc = nsimplify( a_approx_trunc )

In [16]: a_approx_trunc
Out[16]: 833/500

In [17]: type(a_approx_trunc)

Chapter 6, IPython session 3

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



210 Chapter 6: Decimal numbers in Python

Out[17]: sympy.core.numbers.Rational

In [18]: REtruncating = abs( (a - a_approx_trunc)/a )

In [19]: REtruncating
Out[19]: 1/2500

In [20]: N(REtruncating)
Out[20]: 0.000400000000000000

In [21]: N(REtruncating,1)
Out[21]: 0.0004

In [22]: RErounding = abs( (a - a_approx_round)/a )

In [23]: RErounding
Out[23]: 1/5000

In [24]: N(RErounding)
Out[24]: 0.000200000000000000

In [25]: N(RErounding,1)
Out[25]: 0.0002

In [26]:
In [26]: TruncationPercentError = (REtruncating/a)*100

In [27]: TruncationPercentError
Out[27]: 3/125

In [28]: N(TruncationPercentError)
Out[28]: 0.0240000000000000

In [29]: N(TruncationPercentError,2)
Out[29]: 0.024

In [30]:

This discussion is useful for situations where we know what the output would be. This is the
case of test values used to verify that our program is computing correctly. In those cases we
can also check the relative error for known situations on which the result is not exact. When
performing numerical computations, you will use equation 6.1 to compute an overall estimation
error of your computations relative to the average value of the computed quantity. Similar

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



211 Chapter 6: Decimal numbers in Python

use will be given when analyzing laboratory measurements from your Physics, Chemistry, or
Biology courses in your educational track.

6.2.3 Cautionary tales about operations with decimals

How, you might be wondering, the computer finite digit arithmetic actually affect our compu-
tations.? Let’s consider we are given to compute the quantity ((A+B)2− 2AB−B2)/A2 with
A = 0.0254 and B = 9788.0. You can readily do it using an ipython console:

In [1]: A = 0.0254

In [2]: B = 9788.0

In [3]: ApproxValue_1 = ( (A+B)**2 - 2*A*B - B**2)/A**2

In [4]: ApproxValue_1
Out[4]: 1.0000241431738204

In [5]:

Chapter 6, IPython session 4

But your project classmate (working late night too) does the computation switching the assigned
values to A and B, in the form:

In [10]: A = 9788.0

In [11]: B = 0.0254

In [12]: ApproxValue_2 = ( (A+B)**2 - 2*A*B - B**2)/A**2

In [13]: ApproxValue_2
Out[13]: 1.0000000000000002

In [14]:

Chapter 6, IPython session 5

In the morning when discussing the obtained results from the seemingly trivial exercise to be
presented in class, which value would you choose to be reported? The one on output cell

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



212 Chapter 6: Decimal numbers in Python

Out[4]: or the one on output cell Out[13]:? What would you do with the other result? It
is wise to hide it?

In this case, it turns out that the value of 1 (in cell Out[13]:) is the right value in this
operation. In fact, with a little algebra you can easily verify that

(A+B)2 − 2AB −B2

A2
= 1. (6.4)

An after the fact computation of the relative error shows that the second computation is much
closer to the correct result than the first computation, as you can see in what follows:

In [5]: ExactValue = 1.0

In [6]: RelError_1 = abs( (ExactValue - ApproxValue_1)/ExactValue )

In [7]: RelError_1
Out[7]: 2.4143173820379005e-05

In [8]: PercentError_1 = (RelError_1/ExactValue)*100

In [9]: PercentError_1
Out[9]: 0.0024143173820379005

In [15]: RelError_2 = abs( (ExactValue - ApproxValue_2)/ExactValue )

In [16]: RelError_2
Out[16]: 2.220446049250313e-16

In [17]: PercentError_2 = (RelError_2/ExactValue)*100

In [18]: PercentError_2
Out[18]: 2.220446049250313e-14

In [19]:

Chapter 6, IPython session 6

What went wrong, you might be wondering, with the first result of output cell Out[4]:? It
turns out that the trouble here comes from the subtlety of subtracting (in the numerator) two
very similar numbers and then dividing the result by the small value of A2, as can be seen
inspecting the magnitude of each term:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



213 Chapter 6: Decimal numbers in Python

In [19]: A = 0.0254

In [20]: B = 9788.0

In [21]: (A+B)**2
Out[21]: 95805441.23104517

In [22]: 2*A*B + B**2
Out[22]: 95805441.2304

In [23]: A**2
Out[23]: 0.00064516

In [24]: (A+B)**2 - (2*A*B + B**2)
Out[24]: 0.000645175576210022

In [25]:

Chapter 6, IPython session 7

In the second case this situation does not happen, as can also be checked out inspecting the
magnitude of each term:

In [25]: A = 9788.0

In [26]: B = 0.0254

In [27]: (A+B)**2
Out[27]: 95805441.23104517

In [28]: 2*A*B + B**2
Out[28]: 497.23104515999995

In [29]: A**2
Out[29]: 95804944.0

In [30]: (A+B)**2 - (2*A*B + B**2)
Out[30]: 95804944.00000001

In [31]:

Chapter 6, IPython session 8

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



214 Chapter 6: Decimal numbers in Python

This issue is not difficult to happen in practice, as we can easily (not being aware of the
mentioned subtlety) program the left hand side of equation 6.4 as a two parameter function
and then use it to make additional computations.

The general issue here is that any error of a finite digit representation gets enlarged by
dividing by a number with small magnitude or via multiplication by a number with large
magnitude.

This last issue is shown below (compare output cells Out[10]: and Out[14]:):

In [8]: A = 9788.0

In [9]: B = 0.0254

In [10]: ((A+B)**2 - 2*A*B - B**2)*B**2 # Expanding will give (A*B)**2
Out[10]: 61809.517671040005

In [11]: (A*B)*(A*B)
Out[11]: 61809.51767103999

In [12]: A = 0.0254

In [13]: B = 9788.0

In [14]: ((A+B)**2 - 2*A*B - B**2)*B**2 # Expanding will give (A*B)**2
Out[14]: 61811.00994896889

In [15]: (A*B)*(A*B)
Out[15]: 61809.51767103999

In [16]:

Chapter 6, IPython session 9

It is let as an exercise to compute the errors in these computations (exercise 6.1, page 241).

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



215 Chapter 6: Decimal numbers in Python

The limitations of the computer in representing decimals also impose some restrictions in the
addition of decimals. From your Prealgebra course work you know that for any number a, it is
always true that a+ 1 = 1 only and only if a = 0.

Since the computer can not represent arbitrarily small decimal numbers, then the machine
epsilon is defined as the largest number ε (represented in the computer) such that 1.0 + ε = 1.0
In other words the values less or equal to ε are considered zeros when added to one. Let’s see
it in action:

In [18]: import sys

In [19]: e = sys.float_info.epsilon #the machine epsilon

In [20]: e
Out[20]: 2.220446049250313e-16

In [21]: e == 2.**(-52)
Out[21]: True

In [22]: 1e-22 < e
Out[22]: True

In [23]: 1e-22 + 1.0 == 1.0
Out[23]: True

In [24]: 1e-16 < e
Out[24]: True

In [25]: 1e-16 + 1.0 == 1.0
Out[25]: True

In [26]: e < e
Out[26]: False

In [27]: e + 1.0 == 1.0
Out[27]: False

In [28]: 1e-15 < e
Out[28]: False

In [29]: 1e-15 + 1.0 == 1.0
Out[29]: False

Chapter 6, IPython session 10

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



216 Chapter 6: Decimal numbers in Python

In [30]:

Another true operation from your Prealgebra course work is that a+ 1 6= a (or that a+ 1 > a).
But due to limitations in the representation of decimals, there are many numbers for which
a+ 1 = a. Here is a code to find the minimal value for which that happen:

a = 1.0
i = 0
while (a + 1.0) != a:

i = i+1
a = a*2.0

print("for i >= {}, it happens that (2.0)**i + 1 = (2.0)**i".format(i))

Executing this code you will find that i = 53, for which we have:

In [27]: (2.0)**52 + 1.0 == (2.0)**52
Out[27]: False

In [28]: (2.0)**53 + 1.0 == (2.0)**53
Out[28]: True

In [29]: (2.0)**54 + 1.0 == (2.0)**54
Out[29]: True

In [30]:

Chapter 6, IPython session 11

Since 253 ≈ 1016, using powers of ten with exponents greater than or equal to 16 gives similar
results as above:

In [70]: 10.**14 + 1.0 == 10.**14
Out[70]: False

In [71]: 10.**15 + 1.0 == 10.**15
Out[71]: False

Chapter 6, IPython session 12

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



217 Chapter 6: Decimal numbers in Python

In [72]: 10.**16 + 1.0 == 10.**16
Out[72]: True

In [73]: 10.**17 + 1.0 == 10.**17
Out[73]: True

In [74]:

You can recall that, back in chapter 2, page 31, we were dealing with the wheat problem
involving the computation of a big whole number. Back then we were able to perform the
computation thanks to the infinite precision of Python to represent integers. The number we
are talking about is 264−1, which as an integer is readily computed in Python:

In [31]: 2**64 - 1
Out[31]: 18446744073709551615

In [32]:

Chapter 6, IPython session 13

If trying to do this computation using standard floating point computation, we will be in trouble
(the last four digits to the right are lost):

In [32]: 2.0**64 - 1.0
Out[32]: 1.8446744073709552e+19

In [33]:

Chapter 6, IPython session 14

You can certainly explain this result based on what we just learned. In the next section we will
come back to try perform correctly this computation using decimals (as we already know how
to do it correctly using integers).

Another cautionary tale (derived in some cases from the previous one) involves the violation (in
computer arithmetic with decimals) of the associative law of addition (a+ b) + c = a+ (b+ c).

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



218 Chapter 6: Decimal numbers in Python

This violation happens when one of the digits is very small compared with the others. Let’s
see it:

In [76]: a = 10.**16; b = -10.**16; c = 1.

In [77]: (a+b)+c == a+(b+c)
...:

Out[77]: False

In [78]: a = 10.**16; b = -10.**16; c = 2.

In [79]: (a+b)+c == a+(b+c)

Out[79]: True

In [80]: a = 1234.567 ; b = 45.67834 ; c = 0.0004

In [81]: (a +b)+ c
Out[81]: 1280.2457399999998

In [82]: a +(b +c)
Out[82]: 1280.24574

In [83]:

Chapter 6, IPython session 15

We also needs to be careful when performing computations with very small numbers, as any
one that results in underflow are set to zero (as we already know). What follows are some
operations with small numbers:

In [27]: 1e-323 + 1e-323 # OK
Out[27]: 2e-323

In [28]: 1e-324 + 1e-324 # round off error occur beyond exponent negative 323
Out[28]: 0.0

In [29]: 1e-162*1e-161 # OK
Out[29]: 1e-323

Chapter 6, IPython session 16

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



219 Chapter 6: Decimal numbers in Python

In [30]: 1e-162*1e-162 # round off error occur
Out[30]: 0.0

In [31]:

Computing with large numbers is also problematic. Any number that results in overflow are
set to the special value inf and the program might not stop. Here are some operations with
large numbers:

In [31]: 1.0*1e+308 # OK
Out[31]: 1e+308

In [32]: 1.0*1e+309 # overflow occur beyond exponent positive 308
Out[32]: inf

In [33]: 1e+154*1e+154 # OK
Out[33]: 1e+308

In [34]: 1e+154*1e+155 # overflow
Out[34]: inf

In [35]: 1e-309*1e309
Out[35]: inf

In [36]: 1e-309*1e+309
Out[36]: inf

In [37]: 1e-309*1e309 + 1e-309*1e309
Out[37]: inf

In [38]:

Chapter 6, IPython session 17

As mentioned, in Python the special representation inf is assigned to overflow results. Another
special symbol (nan) is assigned to undefined results, standing for not-a-number, meaning an
undefined mathematical operation. These symbols are used so when an overflow or undefined
operation happen in a computation the program do not stop. In case we want to check if any
of them has been given as output, we can use special functions from the SciPy module isnan

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



220 Chapter 6: Decimal numbers in Python

and isinf. The following line of code illustrates this:

In [47]: a = [1e-309, 1e309, 2.3, 6]

In [48]: b = []

In [49]: for i in a:
...: b = b + [i*i-i] + [i*i]
...:

In [50]: b
Out[50]: [-1e-309, 0.0, nan, inf, 2.9899999999999993,

5.289999999999999, 30, 36]

In [51]: from scipy import isnan, isinf

In [52]: isnan(b[2])
Out[52]: True

In [53]: b[2]
Out[53]: nan

In [54]: isinf(b[2])
Out[54]: False

In [55]: isinf(b[3])
Out[55]: True

In [56]: b[3]
Out[56]: inf

In [57]:

Chapter 6, IPython session 18

Presenting the preceding cautionary computational subtleties has the main intention of making
you aware that numerical computing with decimals has some important limitations that (if
working with care) can be overcome (if not, look around you to see the many devices that work
using finite floating point arithmetic). There are also examples stressing the fact that we need
to be careful in extreme when computing results with decimals could put any life at risk (see
the references for a few pointers). In this endeavor, when dealing with numerical computations,

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



221 Chapter 6: Decimal numbers in Python

! Be skeptical when confronted with numerical results until you can verify them by other
methods with its respective error boundaries. This helps to minimize problems due to
the effects of loss of precision by aggregation.

! Take a moment to evaluate how the computation was performed. Check the operational
manual to find out which algorithm was implemented to perform the computation. This
helps to avoid non-robust behaviors of the implementation.

! Check the result by using different hardware/operating system platforms to avoid cross-
platform inconsistencies of the results.

6.2.3.1 Some observations when computing with decimals

Illustrated in the preceding section, numerical computing in any computer uses finite digit
arithmetic, which leads to some inconsistencies with the rules of algebra you are learning in
your Prealgebra course work that we need to be aware of:

1. Because of the rule of underflow, addition or subtraction of a very (not zero) small number
might have no effect.

2. a× ( 1
a
) is not always 1.

3. (a+ b) + c in not always equal to a+ (b+ c).
4. Subtracting two floating points close in value might result in roundoff errors that can be

magnified by further division of the result by a small number or by multiplying the result
by a big number.

5. No calculation is more accurate than its weaker portion.
6. Round-off errors can be reduced by reformulation of the calculation in such a way that the

number of computations is lowered. For instance, instead of computing x3 + bx2 + cx+ d
(four multiplications and three additions) it might be better to use ((x + b)x + c)x + d
(two multiplications and three additions).

7. If ram memory is not a problem, avoid computing with decimals or use the most precise
type of floating point avilable in your computations.

6.2.4 Computing with decimals using extended precision

In the preceding section we learned situations on which finite digit arithmetic implemented in
practically any computer of daily use does not satisfy the rules of algebra, generating imprecise
results (measured by the relative error defined via equation 6.1) when computing with decimals
in Python. At the end of the section we mentioned that a way around this inconvenience is
to avoid decimal operations using instead integer or fractions in computations. In large scale
computational projects these alternatives could be very slow and we can also run out of ram
memory.

To give you an idea of the ram memory usage in a computation, let’s consider the case of 64
bits computing with Pythonfloats (which, as you know, are the approximated representations

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



222 Chapter 6: Decimal numbers in Python

of decimals in the Python), but this discussion is valid for any other programming language
using this representation.

To store one 64 bit float, 8bytes are required. One byte (1B) is a storage computer measurement
unit containing eight bits. In terms of more common units, we have that one kilo bytes (1KB)
corresponds to 1024 bytes (1KB = 1024B), while one mega bytes (1MB) is equivalent to 1024KB
(1MB = 1024KB), continuing with one giga bytes (1GB) that is equivalent to 1024MB (1GB =
1024MB), and so forth.

Consequently, to store a million (106) floats (not an unusual quantity in large scale computa-
tions), we need the amount of (8B)(1000000) = 8×106B ≈ 7813KB ≈ 7.63MB. For infinity
precision operations with integers and fractions, this requirement of memory could growth very
quickly. But for small computational projects, today’s standards in ram memory and hard
drive storage can satisfy the requirements of not intensive computational needs.

Thus, you can take advantage of such possibility to perform your exact Prealgebra computa-
tional requirements with infinity precision via computing with integer and fractions in Python
and using the S function of SymPy , as we did in the previous chapter. A further illustrative
example follows, using the nsimplify function from the SymPy module to convert a float to a
fraction (check the documentation of nsimplify for further examples on how to use it):

In [1]: A = 0.0254

In [2]: B = 9788.0

In [3]: ( (A+B)**2 - 2*A*B - B**2)/A**2
Out[3]: 1.0000241431738204

In [4]: from sympy import nsimplify

In [5]: A = nsimplify(A) # convert A to a Rational object

In [6]: A
Out[6]: 127/5000

In [7]: B = nsimplify(B) # convert B to an Integer object

In [8]: B
Out[8]: 9788

In [9]: ( (A+B)**2 - 2*A*B - B**2)/A**2
Out[9]: 1

Chapter 6, IPython session 19

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



223 Chapter 6: Decimal numbers in Python

In [10]: type(A)
Out[10]: sympy.core.numbers.Rational

In [11]: type(B)
Out[11]: sympy.core.numbers.Integer

In [12]:

See exercise 6.2 (page 241) for an extra practice in this issue.

By the way, to further enhance its computational capabilities, Python has available a set of
tools for memory management which are very useful to handling efficiently that important
computational resource in case of need (see the references at the end of this chapter, on page 242,
for pointers to it.)

Now, in situations were working with infinite precision is not an option, in Python there are
available options to perform floating point operations with extended precision, two of which
will be present in what follows.

6.2.4.1 Using SymPy extended float precision

The module SymPy offer several ways for working with extended (or reduced) precision. For
them to work, each number must be defined with the chosen precision to have the same accuracy
in computing with such quantities. There at least two functions for this kind of operations in
SymPy : N and Float. You can made them available in the current computational environment
using the usual import instruction:

In [1]: from sympy import N

In [2]: N? # Hit return to read the documentation

In [3]: from sympy import Float

In [4]: Float? # Hit return to read the documentation

In [5]:

Chapter 6, IPython session 20

We will use the N function in what follows, leaving to you the curiosity to explore on your own
the other function. This function N is used as follows:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



224 Chapter 6: Decimal numbers in Python

N(number, precision)

where precision is optional. If not given, the default value of standard Python is used. Here
are some examples:

In [63]: N(1)
Out[63]: 1.00000000000000

In [64]: N(100)
Out[64]: 100.000000000000

In [65]: a = N(10000000)

In [66]: a
Out[66]: 10000000.0000000

In [67]: type(a)
Out[67]: sympy.core.numbers.Float

In [68]:

Chapter 6, IPython session 21

Notice that the type of the object returned by N is Float ( you might correctly guess it is
of the same type returned by the other mentioned function to perform extended precision
computations).

Let’s now use this function to perform the computing of the familiar quantity 264 − 1 from
chapter 2, page 31.

In [1]: a = 2

In [2]: type(a)
Out[2]: int

In [3]: exactVal = a**64 - 1

In [4]: exactVal
Out[4]: 18446744073709551615

Chapter 6, IPython session 22

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



225 Chapter 6: Decimal numbers in Python

In [5]: a = 2.0

In [6]: type(a)
Out[6]: float

In [7]: floatVal = a**64 - 1

In [8]: floatVal
Out[8]: 1.8446744073709552e+19

In [9]: from sympy import N

In [10]: a = N(a, 20)

In [11]: a
Out[11]: 2.0000000000000000000

In [12]: type(a)
Out[12]: sympy.core.numbers.Float

In [13]: sympyVal = a**64 - 1

In [14]: sympyVal
Out[14]: 18446744073709551615.

In [15]:

Our next example explores the computation of the imprecise result of subtracting two similar
numbers and dividing the result by a small one:

In [25]: A = 0.0254 ; B = 9788.0

In [26]: A = N(A, 30) ; B = N(B, 30)

In [27]: ( (A+B)**2 - 2*A*B - B**2)/A**2
Out[27]: 1.00000000000000000000049606753

In [28]: A = N(A, 50) ; B = N(B, 50) # increase precision to verify last
digits

Chapter 6, IPython session 23

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



226 Chapter 6: Decimal numbers in Python

In [29]: ( (A+B)**2 - 2*A*B - B**2)/A**2
Out[29]: 1.0000000000000000000000000000000000000000000000000

In [30]:

See exercise 6.3 (page 241) for getting the right answer of the multiplication problem of page 214.
You are also encourage to change the precision figure to see its influence on the obtained output.

Our final example uses the triple 3987, 4365, and 4472 which according to a Simpson’s episode
(see the reference page for the YouTube video), that using power 12 the triple violates Fermat’s
last theorem, meaning that 398712+436512−447212 = 0. Using Python integer infinite precision
we can easily disprove that claim, but just for fun let’s do the math in an ordinary (non-
scientific) calculator (mimic here using SymPy reduced precision):

In [52]: x = 3987. ; y = 4365. ; z = 4472.

In [53]: x = N(x,9) ; y = N(y,9) ; z = N(z,9)

In [54]: x
Out[54]: 3987.00000

In [55]: y
Out[55]: 4365.00000

In [56]: z
Out[56]: 4472.00000

In [57]: x**12 + y**12
Out[57]: 6.39766563e+43

In [58]: z**12
Out[58]: 6.39766563e+43

In [59]: x**12 + y**12 - z**12
Out[59]: 0

In [60]: x**12 + y**12 - z**12 == 0
Out[60]: True

Chapter 6, IPython session 24

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



227 Chapter 6: Decimal numbers in Python

In [61]:

Your next exercise is disprove this equality (see exercise 6.4, page 241. Moreover, you could go
back and redo the IPython sessions of the preceding section 6.2.3 (starting at page 211) using
this way of increasing the precision and accuracy of a computation using the N function from
the SymPy module.

As you might have already anticipated from the examples in this section on using the N function
from the SymPy module to increasing the precision and accuracy of a computation, that is a
usual technique to check the validity of a computation. That is, we perform a calculation with
a particular precision and accuracy, and then we increase them to compare the obtained results
(sometimes this is referred to increasing the order of the computation). This is particular useful
in the production stage of our code, when we are in the process of generating new results (we
have already used test cases in evaluating the correctness of the program being use).

Let’s finish this section mentioning that Python offer another alternative via the NumPy module
to increase the precision of a computation up to 128 bits, which can be used as a preliminary
check for large scale computations because numerical computing via NumPy is more efficient
than doing so with SymPy . Discussing it is outside the scope of your Prealgebra course work
enhancement and enrichment journey.

6.2.5 Special mathematical functions and numbers in Python

In this section we will present how to compute with many mathematical functions available in
Python. These include logarithms, square roots, exponential, trigonometric, inverse trigonomet-
ric, and the special numbers pi and e.

6.2.5.1 Special mathematical functions and numbers via SymPy

The following IPython session defines the special numbers pi and e using SymPy :

In [8]: import sympy as sp

In [9]: from sympy import N

In [10]: sp.exp(1)
Out[10]: E

In [11]: N(sp.E) # prints the value e using standard precision
Out[11]: 2.71828182845905

Chapter 6, IPython session 25

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



228 Chapter 6: Decimal numbers in Python

In [12]: N(sp.pi) # prints the value pi using standard precision
Out[12]: 3.14159265358979

In [13]: mypi = N(sp.pi, 50) # assigns to variable mypi 50 digits pi

In [14]: mypi
Out[14]: 3.1415926535897932384626433832795028841971693993751

In [15]: mye = sp.exp(N(1., 50)) # assigns to variable mye 50 digits of e

In [16]: mye
Out[16]: 2.7182818284590452353602874713526624977572470937000

In [17]: mye = N(sp.E,50) # assigns to variable mye 50 digits of e

In [18]: mye
Out[18]: 2.7182818284590452353602874713526624977572470937000

In [19]:

Using the previous setup, the trigonometric functions (sin, csc, cos, sec, tan, cot) are computed
in the following way:

In [41]: sp.sin(mypi/4)
Out[41]: sqrt(2)/2

In [42]: sp.cos(mypi/4)
Out[42]: sqrt(2)/2

In [43]: sp.tan(mypi/4)
Out[43]: 1

Chapter 6, IPython session 26

and the inverse trigonometric functions (asin, acsc, acos, asec, atan, acot) are also defined:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



229 Chapter 6: Decimal numbers in Python

In [54]: sp.acos(sp.sqrt(2)/2)
Out[54]: pi/4

In [55]: sp.asin(sp.sqrt(2)/2)
Out[55]: pi/4

In [56]: sp.atan(1)
Out[56]: pi/4

In [57]:

Chapter 6, IPython session 27

There are also some trigonometric identities

In [61]: from sympy import symbols

In [62]: x, y = symbols('x y')

In [63]: sp.trigsimp(sp.sin(x)**2 + sp.cos(x)**2)
Out[63]: 1

In [64]: sp.expand_trig(sp.sin(x + y))
Out[64]: sin(x)*cos(y) + sin(y)*cos(x)

In [65]: sp.expand_trig(sp.cos(x + y))
Out[65]: -sin(x)*sin(y) + cos(x)*cos(y)

In [66]: sp.expand_trig(sp.sin(2*x))
Out[66]: 2*sin(x)*cos(x)

In [67]:

Chapter 6, IPython session 28

Taking Logarithms is as follows:

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



230 Chapter 6: Decimal numbers in Python

In [88]: sp.log(sp.exp(1)) # natural logarithm of number E
Out[88]: 1

In [89]: sp.log(sp.E) # natural logarithm of number E
Out[89]: 1

In [90]: sp.log(sp.exp(1), 10) # base 10 logarithm of number E
Out[90]: 1/log(10)

In [100]: sp.log(sp.E, 10) # base 10 logarithm of number E
Out[100]: 1/log(10)

In [101]:

Chapter 6, IPython session 29

Other modules have also available the numerical versions of these functions. In particular, the
modules NumPy and SciPy has them available.

6.2.6 Solving equations involving decimals via SymPy

When working with equations in the context of whole numbers 3.9 (page 119) or integers 5.2.3
(page 176), or fractions 5.4.6 (page 195), the fact that in each of these cases we have used the
same setup in the use of Python to find (via SymPy) the solution of any equation (namely,
identify the left and right side of the equation to give them as input to the solver), it can
readily be anticipated that such a way for finding solutions of equations via SymPy can also
work in finding solutions to equations containing decimals (as a more general representation of
numbers which can not be expressed as fractions, like the irrational numbers such as π). You
might want to reread the aforementioned sections bout equations to refresh yourself how the
procedure works.

Since equations play a very important role in modeling the world out there (close and far away
as you already know from your Physics, Chemistry and Biology classes), before using SymPy to
find any solution, it is important that you get acquainted with the whole set of steps presented
in your Prealgebra course work that you can take to find solution to equations because SymPy
will hide them from you (unless it is programmed to show the steps, and we are not doing
so here). In your Prealgebra course work you have been solving so many routine problems in
order to learn the different methods applied to find solution to the equations you encounter
at this level of your formal education. You could practice such procedures by solving step by
step many of the exercises at the end of the corresponding chapter of your Prealgebra textbook
using the program presented and described in the Appendix of this chapter, on page 236. The
knowledge of Python you have reached at this point, will allow you to explore and understand

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



231 Chapter 6: Decimal numbers in Python

the core Python function used to create that program (though you still need to still understand
on your own the few basic elements of Flask that we used to show the functionality of the
program in a web browser).

Besides that, it is also crucial at this stage of your formal education to think about equations
beyond the literal “find the solution of · · · ”. You need to start thinking about what the equality
sign in an equation is telling you. The most straight forward understanding of it is as an
indication to find the value of the unknown variable that makes equal the left and the right
hand side of the equation (when the unknown is assigned a value, numerical or symbolic, that
is a solution the whole expression becomes a true statement). But you could also think of the
equal sign as indicative that you could use one side of the equation in place of (or equivalent
to) the other side of the equation and vice-versa in any chain of reasoning in which either side
of the equation appear.

Let’s see an example. Suppose we are dealing with the equations:

ax+ b = c (6.5)

In the usual interpretation of balancing both sides of the equation (or solving for the unknown
variable x) it is found that with x = (c − b)/a (obviously a must be different from zero.
Otherwise b = c) both sides of the equation are balanced. But the equality sign in equation 6.5
also means that in place of c one could use ax + b or vice-versa, in place of ax + b one could
use c in any chain of reasoning associated with equation 6.5. This interpretation is particularly
useful when solving system of equations or making proof. We did that in the Appendix of
Chapter 2 (page 59), when replacing the left hand side of equation A.1 (page 59) appearing in
the equation A.2 by the right hand side of equation A.1 (to see this in detail, go through the
equations A.1--A.5).

On the other hand, equations are a guide to our thinking. Finding solutions of them activate
thought processes of high order which should be reinforced with a method, like the general three
steps one for writing algorithms: designing--implementing--testing. Designing goes in the heart
of thinking before implementing. It involve asking questions: can I use induction of deduction?
should I put everything in one side of the equation? what set of operations allows me to do
so? Could a division appear in my chain of reasoning? If it happen, how can I deal with it.?
Then, your implementing strategy needs to be guided by verifying you are getting equivalent
equations, that you are not loosing solutions or that your are not adding new ones. A crucial
point here is verifying that each given step is a valid step (you’ll find that incorrect procedures
leads to right results, like the misuse of the cancelation trick in computing �95

1�9
= 5. The answer

(5) of the division is certainly right but the procedure, as your intuition says, is clearly wrong.)
Finally, the testing stage could bring you to verify that your solution is correct, perhaps plugin
the solution in the equation, but, does the found solution has meaning in the context of the
equation? Does it makes sense to find 1000 as the age to a human being? In what units that
answer could be true? By making this sort of questions your equation guides your thinking.

Let’s continue by finding the solution of (notice that in the equation could now appear decimals,
fractions and integers. We are not restricted on using a particular set of numbers as in the

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



232 Chapter 6: Decimal numbers in Python

previous sections):

frac35 = 5.2 ∗ x+ 9 or 0.6 = 5.2 ∗ x+ 9.0 (6.6)

Surely your Prealgebra textbook has plenty of similar equations stated just like that. In the
previous sections about equations, we have stressed the fact that whenever you try to solve an
equation, you need to spent sometime thinking about what that equation could represent. In
section 5.2.3 (page 176) about solving equations with integers we gave some ideas on how you
can rephrase the wording presenting equation 5.1 (page 232) to make it look as if it were the
result of a word problem. You were able to see that the same equation could be assigned to more
than one word problem representing different situations. What makes unique the problems is
the meaning of the equations in each respective context: perhaps negative solutions are not
allowed in a particular case; perhaps the point of interest in another case is in the set of numbers
greater than the one that solve the equation. There are plenty of possibilities. You named it!.
The point is that one need to look at equations beyond the usual “find the solution of · · · ” and
think of the equations in your Prealgebra course works with the same look you do at those
equations that you see in your Physics, Biology, Chemistry, subjects. You need to go beyond
the overwhelming state of simple learning the methods to solve and equation (that needs to be
learned) and find meaning on each equation (try to see what they might represent connecting
your thought processes with other subjects like Physics, Chemistry or Biology). As exciting
and interesting this discussion might be, it will take us beyond the scope of the book as we
need to continue with our subject of finding the solution of the posed equation 6.6 via Python.
To further explore the meaning of equations, you are encourage to check the references at the
end of Chapter 3, starting on page 144.

Before continuing in finding the solution of equation 6.6 in Python via SymPy , just keep in
mind that SymPy will hide from you how it finds the solution of the equation. Consequently,
you are encourage to workout the exercise following by hand (using pencil and paper or via our
program described in the Appendix of this chapter, on page 236) the procedures for solving
equations presented in your Prealgebra course work. This way you will develop your intuition
on whether the solution found make or not sense and how to check it.

A piece of code to find the solution of equation 6.6 (which you can find under the name
chap06_prog_01_Sympy_SolEquation.py in the directory named chapter_06 of the
programs that comes with this book, that you can download from the respective companion
web site mentioned in the Preface of this book) is as follows:

"""
This program finds the solution of the equation
3/5 = 5.2x + 9

"""
from sympy import symbols, Eq, solveset, S, sympify

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



233 Chapter 6: Decimal numbers in Python

x = symbols('x')

LHS = S('3')/5
RHS = 5.2*x + 9

thesol = list( solveset( Eq(LHS, RHS), x) )

# Check the found solution by substitution
newLHS = LHS - RHS #rearrange the equation to read: LHS - RHS = 0

newLHS = newLHS.subs(x, thesol[0])
if newLHS.simplify() < 1e-15:
print('We verified that x = {2} is solution of {0} =

{1}'.format(LHS,RHS,thesol[0]))

After executing these lines of code you’ll get:

$ python chap06_prog_01_Sympy_SolEquation.py
We verified that x = -1.61538461538462 is solution of 3/5 = 5.2*x + 9

Chapter 6, System shell command 1

If you have trouble understanding this code, please go back and read section 3.9, starting on
page 119.

To check on your onw that the show solution is correct, you are encourage to workout the
exercise following by hand (using pencil and paper or via our program described in the Appendix
of this chapter, on page 236) the procedures for solving equations presented in your Prealgebra
course work.

At this point, you know (from the many examples given in the previous sections of this chapter)
that working with decimals in the limited floting point representations of these numbers in the
computer is prone to errors that propagates across associates computations using them. In
case efficiency is not an issue, any decimal (with a finite set of digits) can be represented as
a fraction, a task that can be done in SymPy via the function nsimplify. Consequently, any
equation containing decimals can be converted to an equivalent equation containing rational
numbers. By solving the later we will get an exact (rational) solution which can then be
converted to a decimal value using the sympy N function.

This is illustrated in the following lines on Python code that find the solution of the equa-
tion 6.6, which you can find under the name chap06_prog_02_Sympy_SolEquation.py
in the directory named chapter_06 of the programs that comes with this book, that you can

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



234 Chapter 6: Decimal numbers in Python

download from the respective companion web site mentioned in the Preface of the book:

"""
This program finds the solution of the equation
3/5 = 5.2x + 9 written as 0.6 = 5.2x + 9

"""
from sympy import symbols, Eq, solveset, N, nsimplify

x = symbols('x')

LHS = 0.6
RHS = 5.2*x + 9

# convert numerical values on each part of the equation to fractions
LHS = nsimplify(LHS)
RHS = nsimplify(RHS)

thesol = list( solveset( Eq(LHS, RHS), x) )
#print('The found solution is x =', thesol[0])

# Check the found solution by substitution
newLHS = LHS - RHS #rearrange the equation to read: LHS - RHS = 0
#print('newLHS =', newLHS)

newLHS = newLHS.subs(x, thesol[0])
if newLHS.simplify() == 0:
print('x = {2} is solution of {0} = {1}'.format(LHS,RHS,thesol[0]))
print('\t Which using decimals, is equivalent to saying that: ')
print('x = {2} is solution of {0} =

{1}'.format(N(LHS),N(RHS),N(thesol[0])))

After executing these lines of code you’ll get:

$ python chap06_prog_02_Sympy_SolEquation.py
x = -21/13 is solution of 3/5 = 26*x/5 + 9

Which using decimals, is equivalent to saying that:
x = -1.61538461538462 is solution of 0.600000000000000 = 5.2*x + 9.0

Chapter 6, System shell command 2

You can try solving the equation step by step via our program described in the Appendix of

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



235 Chapter 6: Decimal numbers in Python

this chapter, on page 236, following the procedures for solving equations presented in your
Prealgebra course work.

Let’s end this section mentioning that, in general, when finding numerical solution to equations,
we might need to use other Python alternatives better suitable than SymPy , like SciPy .

6.3 Chapter Summary
By reaching the end of this chapter you have done wonderful! After finishing this chapter
you know how to handle in Python computational operations of your Prealgebra course work
involving decimals. You learned how decimals are represented in Python using a limited 64 bit of
precision. Accordingly, this limited representation of decimals force the computer to work with
a set of rules known as floating point arithmetic which in many cases lead to contradicting the
rules of algebra. We learned how to overcome such limitations working with SymPy fractions
or using extended precision arithmetic.

We also learned about some special numbers like pi and e are represented in Python, in addition
on how to perform computations involving logarithms, trigonometric functions and their inverse,
square roots, and so forth. In addition, we also covered the solving of equations involving
decimals in Python via SymPy . Moreover, the appendix of this chapter describes a Python
solver equation that we wrote and that you could use to practice the operations you have
learned in your Prealgebra course work to find solution of equations step by step. The solver
is general enough that could handled equations with symbolic and/or numerical parameters.

More importantly, in the context of programming, by studying the afore mentioned application
you could start building your own programming applications either to be executed in a system
shell (terminal) or in a browser (though for this you need to learn about Flask or any other
technology allowing the generation of dynamic output for the web).

In the next chapter we will learn about the basics of making plots of a data set in Python via
Matplotlib.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Appendix of Chapter 6

A.1 A simple Python one variable, linear equation solver
run on a browser via Flask

This appendix shows a one variable solver equation we have written with the working knowledge
of Python you learned up to now. This application can guide your thoughts in writing your
own ones. We have chosen to display it using a web browser and Flask (thus you need to learn
a bit of it on your own or any other technology allowing the display of dynamic content on a
browser).

Python has a few alternatives to write graphical user interfaces, but we found its instructive
o show that it can be used to deploy applications over a web browser (which in turn can be
used over the internet by properly configuring a web server). We are leaving as exercise 6.5
(page 241) for you to write a text interface of the main solver which you can find under the
name EquationSolver_funcs.py in the directory named chapter_06/PythonFlask_
EquationSolver of the programs that comes with this book, that you can download from
the respective companion web site mentioned in the Preface of the book.

To use our solver, you need o go to the folder PythonFlask_EquationSolver under the
directory chapter_06 just mentioned. Once in there, you need to execute on a system shell
(terminal) the instruction:

$ python EquationSolver.py

Chapter 6, System shell command 3

to which the system will output:

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

* Debugger is active!

* Debugger PIN: 113-137-830

236



237 Appendix of Chapter 6

Now you need to open a web browser on your computer and point it to browse the address
listed after “Running on” in the first line of the output shown above (which in our case is
http://127.0.0.1:5000/). Whenever you want to end this program you need to hit
CTRL--C, as mentioned in that same output line.

After pasting the given address in the respective place of the browser, it will show a page
looking as shown in figure A.1 below.

Figure A.1: General one variable equation solver in Python.

In what follows we will only showing relevant figures, leaving the top and bottom header of the
page. We will show how to find step by step solution of the default shown equation, but you
could use any other equation.

1. In the box at the right side of Enter the equation, we need to write down the equation
whose solution we want to find. This equation needs to be entered using Python math
symbology. In that box we write a ∗ x + b = c ∗ x + d (any extra white space will be
ignored)

2. In the box next to What would you like to do?, we need to enter a number from the
options (1--5) listed at the bottom of the web page. we are going to use 1.

3. The option 1 in the previous item means to add a term to both sides of the equation. We
could enter in the box next to Enter the term, any term to add to both sides of the
equation that we think could help us to find a reduced equivalent equation. For instance,
we can enter −b, or −d, or −b− c ∗ x, or −d− a ∗ x or any other term that you like. To
make this demonstration a bit faster we will enter −b − c ∗ x. We are assuming that
x is the variable (unknown) in our equation.

4. We leave empty the box next to Enter the variable name (if 5 is chosen) as it will
be ignored in this case.

Figure A.2 below shows the above setup before hitting the submit Values bouton.
Copyright © 2018 by Sergio Rojas. All rights reserved.

Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8
License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



238 Appendix of Chapter 6

Figure A.2: Filling the boxes of the equation solver of figure A.1.

After hitting the submit Values bouton the boxes becomes empty and the following output
is shown below it:

Figure A.3: The output after hitting the submit Values bouton of figure A.2.

Our new equivalent equation is the one shown next to where it is said Resulting in (which
in this case is the equation a ∗ x − c ∗ x = −b + d). Notice that the left hand side contains
non gruped (unfactored) combinations of the uknown x while the right hand side contains only
algebraic parameters. We repeat the previous step:

1. In the box at the right side of Enter the equation, we write our new equation a ∗ x−
c ∗ x = −b+ d.

2. In the box next to What would you like to do?, this time we enter 4.
3. The option 4 in the previous item means to divide by a term both sides of the equation.

We will choose c (a could also be chosen) to further reduce the left hand side of the
equation.

4. We leave empty the box next to Enter the variable name (if 5 is chosen) as it will
be ignored in this case.

Figure A.4 below shows the above setup before hitting the submit Values bouton.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



239 Appendix of Chapter 6

Figure A.4: New filling the boxes of the equation solver.

After hitting the submit Values bouton the boxes becomes empty and the following output
is shown below it:

Figure A.5: The output after hitting the submit Values bouton of figure A.4.

Our new equivalent equation is the one shown next to where it is said Resulting in (which in
this case is the equation x ∗ (a − c)/c = (−b + d)/c). Notice that this time the left hand side
contains gruped (factored) combinations of the uknown x while the right hand side contains
only algebraic parameters. We repeat the previous step:

1. In the box at the right side of Enter the equation, we write our new equation x ∗ (a−
c)/c = (−b+ d)/c.

2. In the box next to What would you like to do?, this time we enter 3.
3. The option 3 in the previous item means to multiply by a term both sides of the equation.

We will choose the full necessary term c/(a−c) to go a little faster, but you could continue
the steps as if you were doing the using pencil and paper.

4. We leave empty the box next to Enter the variable name (if 5 is chosen) as it will
be ignored in this case.

Figure A.6 below shows the above setup before hitting the submit Values bouton.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



240 Appendix of Chapter 6

Figure A.6: New filling the boxes of the equation solver.

After hitting the submit Values bouton the boxes becomes empty and the following output
is shown below it:

Figure A.7: The output after hitting the submit Values bouton of figure A.6.

This time, as expected, we reached the solution of our equation x = (−b + d)/(a − c), shown
next to where it is said Resulting in.

We let you as an exercise to further explore the functionality of this solver, which needs to be
further improved.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Exercises of Chapter 6
Exercise 6.1 Compute the relative error and the percent error of the computations in page 214.

Exercise 6.2 Obtain the exact result of the operations on page 214 converting to fractions the
values of A and B.

Exercise 6.3 Obtain the exact result of the operations on page 214 using extended precision
for the values of A and B.

Exercise 6.4 Find the exact value of x12 + y12 and compare it with z12 on the computations in
page 226. How would you find the closes (non-integer) value for z to best satisfy the equality.
What value did you find? Print some lines of code testing your result.

Exercise 6.5 Wrtie a text interface for the function EquationSolver_funcs.py we wrote
to find step by step solutions a any one variable equation you will find in your Prealgebra course
work (see the Appendix of this chapter for details, on page 236).

241



References of Chapter 6

Books and/or Articles
• Marecek, L. and Smith, M. A. (2017). Prealgebra, Rice University, OpenStax
https://openstax.org.
Book available for free at: http://cnx.org/content/col11756/1.9

• Burden, R. L. and Faires, J. D. (2011). Numerical Analysis, 9th Edition, Brooks/-
Cole.

•

References on the WEB
• The IEEE Standard for Floating-Point Arithmetic (IEEE 754)
https://en.wikipedia.org/wiki/IEEE_754

• What Every Computer Scientist Should Know About Floating-Point Arithmetic:
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

• Floating Point Arithmetic: Issues and Limitations
https://docs.python.org/3/tutorial/floatingpoint.html
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Machine_epsilon

• Decimal fixed point and floating point arithmetic:
https://docs.python.org/3/library/decimal.html
https://en.wikipedia.org/wiki/Extended_precision

• Software bugs:
https://en.wikipedia.org/wiki/List_of_software_bugs
https://en.wikipedia.org/wiki/Software_bug

• Python Memory managegement https://docs.python.org/3/c-api/memory.
html

242



243 References of Chapter 6

• Computer prefixes:
https://en.wikipedia.org/wiki/Binary_prefix

• Simon Singh: The Simpsons and Their Mathematical Secrets
https://youtu.be/bk_Kjpl2AaA?t=912

• DOE steps further toward exascale computing (2018):
https://physicstoday.scitation.org/doi/10.1063/PT.6.2.20180411a

Python tutorial:
https://docs.python.org/3/tutorial/index.html

• SymPy tutorial:
http://docs.sympy.org/latest/tutorial/index.html

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



7

Graphing and data visualization in Python
“If I have seen farther than others, it is because I have stood on the shoulders of giants.”

Issac Newton

7.1 Introductory remarks
A very important aspect of data analysis in any field of the organized knowledge is graphing
and data visualization as it helps to uncover patterns or tendencies in the data behavior and
can also guide our thoughts processes to new ways of quantitative analysis of the situation at
hand.

Python offer (among others) the Matplotlib module to perform graphing and data visualization
in two and three dimensional data sets. You can take a look of the sophistication by this
module to create plots by exploring the Matplotlib gallery at http://matplotlib.org/
gallery.html.

In this and last chapter of this book we will presenting the basic ideas to get you started
in plotting two dimensional data that you will find in your Prealgebra course work. In the
reference section of this chapter (page 254) you’ll find a key literature that will guide you to
deeper your understanding of this important Python library.

7.2 Graphing two dimensional data with Matplotlib
We will start by showing how to make any of the plots shown in Figure 7.1. Typically, the
unjoined plot on Figure 7.1a (at the left) is an exploratory plot to verify how the data is
configured. It also apply to unordered data or data that we don’t know whether it can be
joined by a line. The Figure 7.1b (at the right) is when we know that the data set can be joined
by a line ( In Table 7.1 we show a few of the style options that Matplotlib provides for lines
joining the data set, as well as some of the available options for markers).

244



245 Chapter 7: Graphing and data visualization in Python

Figure 7.1: Matplotlib Example of basic two dimensional plots

Before making a plot, we need to have the data x (that goes to the horizontal x-axis) and the
data y (that goes to the vertical y-axis) available i in separated corresponding (same length)
Python lists (other ways are available, including the use of NumPy arrays, but you can learn
about them perusing the listed references). The numbers can be of any type or a mixture of
them. Accordingly, we will use the following data set in our example (feel free to add more
data to check the generality of the presented procedure):

x = [1.5, 2.7, 3.8, 9.5, 12.3]
y = [3.8, -2.4, 0.35, 6.2, 1.5]

To make the plot of this set of x and y data points we can use the Python program listed in
Figure 7.2.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



246 Chapter 7: Graphing and data visualization in Python

Figure 7.2: Matplotlib Making two dimensional plot shown in Figure 7.1a

This program is available under the name chap07_prog_01_2d_plot.py in the directory
named chapter_07 of the programs that comes with this book, that you can download from
the respective companion web site mentioned in the Preface of the book. Please, execute this
code before continuing via issuing in a system shell or terminal the command:

$ python chap07_prog_01_2d_plot.py

Chapter 7, System shell command 1

After executing this code you will see on the computer screen a plot similar to that shown in
Figure 7.3 which, after eploring each element of the plot, you will need to close to recover the
prompt of the system shell or terminal.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



247 Chapter 7: Graphing and data visualization in Python

Figure 7.3: Plot generated by the code of Figure 7.2

The program starts (in line of code 7) by making available the matplotlib.pyplot method in our
current IPython session with the name “plt”. The code continues by defining the data we want
to plot (but it can be defined previous to line 7 if we want to. We are adjusting ourself here to
the conventional rule of making Python modules available at the beginning of the program).

To make the plot, we assign it to the name fig, in line of code 12. (notice the argument defining
the size of the figure, 8 inches wide and 6 inches high). The actual plot is made in line of code
13, where the plot method is called to draw the plot. It takes as mandatory arguments the x
and y already defined Python lists containing the values to be shown in the graph. The other
arguments are optional (for a full discussion of them check the Matplotlib references listed on
page 254). The string of characters ’bo’ means to graph the points in blue and use rounded
bullet as the shape of the marker indicating each point in the data set. Table 7.1 list a few other
values that can be used in place of the ones used in our example (they can also be combined
in any way we want to). For instance, to make the plot of Figure 7.1b replace line of code 13
by the line (see exercise 7.2):

plt.plot(x, y, 'bo-', label='Write the plot legend', lw=2, ms=10)

The following lines of code (14--16) should be self evident what they do. We encourage you
to make changes in the set of parameters in them and execute the code to see what they do.
Lines of code 17 and 18 shows how to change the fontsize and the tick marks shown on each
axis. The plot to the right (Figure 7.1b) has default values for these setting which you can
obtain by commenting or deleting lines of code 17 and 18. Then follows line of code 19 which
defines the way to set the legend of the plot defined by the label (optional parameter) of the

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



248 Chapter 7: Graphing and data visualization in Python

Line Styles Marker shape Basic built-in colors
- x b
– * g
-. p r
: s k

+ m
o y
. w

c

Table 7.1: Plot visualization optional parameters

plot method specified on line of code 13. Alternative values for the parameter of this line of
code are listed in Table 7.2. Please try them in the provided code. To save the plot is line of

Keyword Numerical code Keyword Numerical code
best 0 center left 6

upper right 1 center right 7
upper left 2 lower center 8
lower left 3 upper center 9
lower right 4 center 10

right 5

Table 7.2: Legend positioning keywords

code 20. Here we are saving the plot in png format (included as the extension of the filename
to save the plot). Matplotlib offer many other formats like pdf, gif, and jpeg. Just change the
extension of the filename to get the plot in the format that you like. Finally, the code ends by
issuing the command to show the plot in the computer screen (you might need to close the
plot to continue execution of the program).

As you might have already anticipated, many of these lines of code are decorative. For a quick
view of the plot we only needs to issue lines of code 7, 9, 10, 13 and 21 (you are encourage to
try it on exercise 7.1, page 253). Let’s mention that the lines of code 13-19 can be given in any
order. Lines of code 20--21, however, must be given in that order if you want to save the plot
to a file. If you show it to the screen before saving the plot, you’ll get an empty file.

7.3 Fitting a curve to a two dimensional data (optional)
Once a data set has been shown in a two dimensional graph, one might have interest in fitting
a curve to such data. The most common example is to find the parameters to fit a straight

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



249 Chapter 7: Graphing and data visualization in Python

line to a data set and to draw the fit passing through the given points. Python offer many
alternatives to do so. We will use the NumPy functions polyfit (to find the fitting parameters)
and poly1d (to make a polynomial function using the already found fitting parameters).

In this section we will use the data shown in Table 7.3, which you can find in any Physics
textbook or perusing the Planets astronomical data in Wikipedia [https://es.wikipedia.
org/wiki/Planeta] The idea is to find a relationship (if any) between he two quantities.

Planet Orbital Period (T) (Years) Orbit Radius (R) (meters)
Mercury 88.0/365.3 5.79× 1010

Venus 224.7/365.3 1.08× 1011

Earth 365.3/365.3 1.49× 1011

Mars 687.0/365.3 2.28× 1011

Jupiter 11.86 7.78× 1011

Saturn 29.46 1.43× 1012

Uranus 84.01 2.87× 1012

Neptune 164.8 4.49× 1012

Pluto 248.7 5.91× 1012

Table 7.3: Planets astronomical average data respect the Sun

From your experience in Physics courses (or from driving) you know that the longer the radius of
a circle the longer its take to go around it. Consequently, we might be looking for a relationship
between the period (T) it takes a planet to go around the Sun versus the the average radius (R)
of the orbit. In this case, we can start by looking how the data looks like in a two dimensional
plot of T vs R. This is shown in Figure 7.4.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



250 Chapter 7: Graphing and data visualization in Python

Figure 7.4: A plot of the data from Table 7.3

It is not hard to see in Figure 7.4 that there is a clear functional shape in the data. What it is
hard to see is the kind of relationship we can draw from looking at the graph. To try to clarify
a bit more the nature of the relationship, let’s look at the plot of the natural logarithm of both
quantities. That is, we take ln(T ) and ln(R) to get the plot of ln(T ) Vs ln(R). This could even
help to resolve a bit more the shape around the points that cluster together near the origin
(lower left corner) of the plot. The corresponding graph is shown in Figure 7.5.

Figure 7.5: A log-log plot of the data from Table 7.3

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



251 Chapter 7: Graphing and data visualization in Python

It is clear from Figure 7.5 that a linear relationship relates ln(T ) to ln(R). Meaning that we
could write ln(T ) = mln(R) + b. We need to find the values of m and b. Let’s mention that in
this case we have more interest on the value of m, as we’ll explain shortly. The plot is shown
in Figure 7.6.

Figure 7.6: Fit of the log-log plot of the data from Table 7.3

What relationship can be inferred from this plot? Well, let’s do a little bit of algebra. From the
graph of Figure 7.6 it is clear that ln(T ) = mln(R) + b. From this relation we can write that
ln(T ) = ln(Rm) + ln(eb) = ln(ebRm) or that T = aRm, where a is some constant (notice that
the intercept b is absorbed into a). Now, since m = 1.4996 we can take it as m = 3/2, meaning
that each planet period is proportional to the respective radius orbit to the power 3/2, a fact
that you have learned when studying Kepler’s third Law in your Physics class. We hope you
enjoyed this journey!.

The program to make this analysis is available under the name chap07_prog_02_planets.
py in the directory named chapter_07 of the programs that comes with this book, that
you can download from the respective companion web site mentioned in the Preface of the
book. Please, execute this code before continuing via issuing in a system shell or terminal the
command:

$ python chap07_prog_02_planets.py

Chapter 7, System shell command 2

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



252 Chapter 7: Graphing and data visualization in Python

After executing this code you will see on the computer screen a plot similar to that shown in
Figure 7.4 which, after eploring each element of the plot, you will need to close to continue
execution of the program. This time you will see a plot similar to that shown in Figure 7.5
which, again, after eploring each element of the plot, you will need to close to continue execution
of the program. This time you will see a plot similar to that shown in Figure 7.6. The program
ends after closing this last figure. Since saving each graph has been enabled, the three shown
figures were saved in the current directory. You can see them by executing in a system shell or
terminal the command:

$ ls *png
lnTvslnR_fit.png lnTvslnR.png TvsR.png

Chapter 7, System shell command 3

We are leaving to you to explore the full program on your own.

7.4 Chapter Summary
By reaching the end of this chapter you have done really great! By know you know how
to handle via Python programming computational operations of your Prealgebra course work
involving integers, rational numbers, decimals and basic two dimensional plots. Your knowledge
of python is enough for you to cover on your own the many other applications presented in your
Prealgebra course work. You could also can go to more advanced books on Python programming
to take advantage of the splendid capabilities offered by this wonderful programming language.
We hope you are ready to joint the trip. Thank you for reading this book.

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Exercises of Chapter 7
Exercise 7.1 Write (and execute) an inspection two dimensional plot program containing only
lines 7, 9, 10, 13 and 21 of the code shown in Figure 7.2, of page 246.

Exercise 7.2 Reproduce Figure 7.1b (page 245) by making the change proposed on page 247
in the program of Figure 7.2 (page 246). You will need to comment (or delete) lines of code 17
and 18.

253



References of Chapter 7

Books and/or Articles
• Devert, A. (2014). Matplotlib Plotting Cookbook, Packt Publishing.

• Rojas, S. (2017) Numerical and Scientific Computing with SciPy [Video course]. Packt
Publishing.

• Rojas, S., Christensen, E. A., and Blanco-Silva, F. J. (2015) Learning SciPy for
Numerical and Scientific Computing, Second Edition, Packt Publishing.

References on the WEB
• Matplotlib Examples:
http://matplotlib.org/1.5.1/examples/index.html

• Matplotlib Faq/How-To:
http://matplotlib.org/faq/howto_faq.html

• Matplotlib tutorial:
www.labri.fr/perso/nrougier/teaching/matplotlib/

• Matplotlib Legend guide:
http://matplotlib.org/users/legend_guide.html

• Matplotlib: plotting
http://www.scipy-lectures.org/intro/matplotlib/matplotlib.html

• Three-dimensional Plotting in Matplotlib
https://www.oreilly.com/learning/three-dimensional-plotting-in-
matplotlib

• 3D plotting with Mayavi
http://www.scipy-lectures.org/packages/3d_plotting/index.html

254



255 References of Chapter 7

• Beautiful plots with Pandas and Matplotlib:

https://datasciencelab.wordpress.com/2013/12/21/beautiful-
plots-with-pandas-and-matplotlib/

• Overview of Python visualization tools:
http://pbpython.com/visualization-tools-1.html

• mpltools: Tools for Matplotlib:
http://tonysyu.github.io/mpltools/index.html

• How to make beautiful data visualizations in Python with Matplotlib:

http://spartanideas.msu.edu/2014/06/28/how-to-make-beautiful-
data-visualizations-in-python-with-matplotlib/

• prettyplotlib: Painlessly create beautiful matplotlib plots:
http://blog.olgabotvinnik.com/blog/2013/08/21/2013-08-21-prettyplotlib-
painlessly-create-beautiful-matplotlib/

• Plotting data on a map (Example Gallery):
http://matplotlib.org/basemap/users/examples.html

• Visualization: Mapping Global Earthquake Activity:
http://introtopython.org/visualization_earthquakes.html

• SciPy Cookbook:
http://scipy-cookbook.readthedocs.org/

• Python scripting for 3D plotting:
http://docs.enthought.com/mayavi/mayavi/mlab.html

• Example gallery:
http://docs.enthought.com/mayavi/mayavi/auto/examples.html

Copyright © 2018 by Sergio Rojas. All rights reserved.
Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8

License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/



Index
IPython, 7
Try--except statement, 151

Abundant number, 111
Addition of fractions, 184
Algorithm, 45
Anaconda, 5
Arithmetic mean, 79
Average, 79

Bisection method, 158, 201

Canopy, 7
Cautionary tales operating with decimals,

211
Computing with decimals, 205
Computing with integers, 170
Console of commands, 3

Decimal numbers in Python, 205
Decimals scientific notation, 205
Division of fractions, 191

Enthought, 7
Enthought Canopy, 7
Equations with decimals, 230
Equations with fractions, 195
Equations with inegers, 176
Euclidean greatest common divisor algorithm,

142
Exponential operations with fractions, 192
Extended integer precision, 34
Extended precision with decimals, 221

File input, 161
File input/output, 159

File output, 159
Files, read in Python, 161
Files, write in Python, 159
Finite digit arithmetic, 205
Fitting data, 248
For loop, 37
Fraction operations in Python, 182
Fractions in Python, 178
Function abs, 173
Function exit, 164

Gedit editor, 66
Graphing with Matplotlib, 244
Greatest common divisor (GCD), 114
Greatest common factor (GCF), 114
Greatest common factor via SymPy , 142
Guess a number game, program, 158
Guess two-digit game, program, 156
Guess two-digits game, 47

Idle, 7
IF statement, 65
if statement, 69
if statement simple, 69
if--elif--else statement, 73
if--else statement, 71
IndentationError, 53
IndexError, 56
Input function, 151
Integers in Python, 170
IPython, 7
IPython %lsmagic magic command, 39
IPython %run magic command, 41
IPython %save magic command, 39

256



257 INDEX

Least common multiple (LCM), 174
List in Python, 34

Mathematical induction, 59
Matplotlib, 7
Matplotlib (two-dimensional plots), 244
Mean of a set of values, 79
Median of a set of values, 83
Mode of a set of values, 89
Module fractions, 181
Multiplication of fractions, 189

NameError, 54
Numerical disasters, 53
NumPy, 7

Observations when computing with decimals,
221

Open function, 159
Operations with decimals, 206
Operations with integers, 171

Perfect number, 112
Primality test, 141
Primality test via SymPy, 141
Prime factorization of whole numbers, 118
Prime factorization via SymPy, 143
Prime number, 108
Prime number generation, 109
Print function, 146
Proper divisors, 111, 112
Pseudo-random number generation, 98

Random integers randint, 99
Reading files in Python, 161
Recipe to compue mean, 79
Recipe to compute median, 83
Recipe to compute mode, 89
Relative error, 208
Reserved words in Python, 29

SciPy, 7
Sieve of Eratosthenes algorithm, 109
Software bugs, 53
Solving equations with SymPy, 119

Special mathematical functions in Python,
227

Special numbers in Python, 227
Statistical measures, 78
string objects, 148
Subtraction of fractions, 187
SymPy, 7
SymPy extended precision, 223
SymPy fractions, 179
SymPy function collect, 183
SymPy function Eq, 184
SymPy function expand, 184
SymPy function factor, 183
SymPy function nsimplify, 184
SymPy function powsimp, 192
SymPy function S, 184
SymPy function simplify, 184
SymPy function solveset, 184
SymPy function symbols, 184
SymPy function sympify, 184
SymPy function together, 183
SymPy GCD or GCF, 175
SymPy GCF, 175
SyntaxError, 55
sys module, 164
System shell, 3

Terminal, 3
The sailors, the coconuts, and the monkeys

problem, 127
True table, 77
True table for and (&), 77
True table for or (|), 78
Tuple, 104
Two-dimensional plots via Matplotlib, 244
TypeError, 55

ValueError, 57
Variables in Python, 29

While loop, 44, 45
Writing files in Python, 159
Writing Functions in Python, 101

ZeroDivisionError, 56
Copyright © 2018 by Sergio Rojas. All rights reserved.

Legal Deposit/Depósito Legal: MI2018000516 ISBN: 978-980-18-0123-8
License/Licencia: http://creativecommons.org/licenses/by-nc/4.0/

View publication stats

https://www.researchgate.net/publication/325473565

