
Open
Signals and
Systems
Laboratory
Exercises
Andrew K. Bolstad
Julie A. Dickerson

IOWA STATE UNIVERSITY DIGITAL PRESS

Open Signals and Systems Lab Exercises

Andrew Bolstad and Julie Dickerson

IOWA STATE UNIVERSITY DIGITAL PRESS

Ames

This is a publication of the

Iowa State University Digital Press

701 Morrill Rd, Ames, IA 50011

https://www.iatatedigitalpress.com

digipress@iastate.edu

Copyright © 2021 Andrew Bolstad and Julie Dickerson

Open Signals and Systems Lab Exercises by Andrew Bolstad and Julie Dickerson is

licensed under a Creative Commons Attribution-NonCommercial 4.0 International

License, except where otherwise noted. You are free to copy, share, adapt, remix,

transform, and build upon the material for any purpose, even commercially, as long as

you follow the terms of the license.

Open signals and systems lab / Andrew Bolstad and Julie Dickerson

https://doi.org/10.31274/isudp.2021.68

https://www.iastatedigitalpress.com
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.31274/isudp.2021.68

Acknowledgments

This collection would not be possible without the help of both Abbey Elder and Harrison
Inefuku, nor without support provided by a 2019 Miller Open Education Mini-grant.

While some of the lab exercises collected here have been completely rewritten, others
have been used in Iowa State University’s Electrical and Computer Engineering Department
for many years. Thank you to every student, teaching assistant, and faculty member who
has contributed to these lab exercises. In particular, thank you to the senior design teams
of sdmay18-31 (Chris Caldwell, Eric Joyce, Leif Bauer, Marty Szuck, Nicholas Star and
Tyler Tran) and sddec20-14 (Sam Burnett, Isaac Rex, Brady Anderson, Mitchell Hoppe,
Emily LaGrant, and Max Kiley). Also, thank you to Matt Post for making signals and
systems labs a better experience for students each semester.

Table of Contents

Introduction ii

MATLAB Basics 1

Synthesis of Sinusoidal Signals using Tuning Forks 13

Impulse Response and Auralization 19

Frequency Response: Notch and Bandpass Filters 26

Fourier Series 34

Introduction to Digital Images 37

Filtering Digital Images 45

i

Introduction

Open Signals and Systems Laboratory Exercises is a collection of lab assignments that
have been used in EE 224: Signals and Systems I in the Department of Electrical and
Computer Engineering at Iowa State University. These lab exercises have been curated,
edited, and presented in a consistent format to improve student learning.

The first lab exercise introduces students to the MATLAB environment and language
with an emphasis on signal processing applications. Students solve a system of equations,
manipulate complex numbers, vectorize an equation, and manipulate sound and image files.
The next lab exercise reinforces the concepts of period and frequency by having students
record the sound of a tuning fork and measuring characteristics of the audio signal. The
third lab uses the impulse response of a system to simulate how things sound in different
locations.

Labs four and five give students practice with frequency domain signal manipulation.
Lab four explores various filter types, including notch and bandpass. Lab five has students
compare the Fourier series coefficients of a tone played by a trumpet and a flute. Students
also have the opportunity to make their own “instrument” by manipulating Fourier series
coefficients. These lab exercises are somewhat long; we often give students two weeks to
complete each of them.

The last two lab exercises in this collection focus on image processing. Lab 6 introduces
students to basic pixel manipulation and displaying images in MATLAB. Lab 7 lets students
apply two-dimensional filters for noise reduction and edge detection.

With a few exceptions noted above, these labs can usually be completed in a two hour
lab session with students working in pairs. The collection presented here represents close
to a full semester of lab exercises; instructors may wish to supplement this collection with
labs covering modulation and sampling, or require a student project.

ii

MATLAB Basics

EE 224: Signals and Systems I

1 Overview

This lab introduces the MATLAB computing environment. MATLAB is an extremely
useful tool for signals and systems as well as for many other computing tasks. Unlike
C, C++, or Java, there is no need to compile MATLAB code, making debugging and
experimenting much easier. The purpose of this lab is not to provide a comprehensive
introduction to MATLAB, but to help students get comfortable enough to learn more on
their own. Future labs will introduce new MATLAB content as necessary.

Note: Most of this lab was developed using MATLAB versions R2017b and R2019a.
Compatibility across versions is generally very good in MATLAB, but the appearance of the
GUIs tends to change.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Get help and documentation for MATLAB functions

2. Solve matrix-vector equations in MATLAB

3. Manipulate complex numbers in MATLAB

4. Vectorize a simple equation

5. Use MATLAB’s plotting tools to graph signals

This lab will also preview future labs by demonstrating how to play audio signals and
display images.

3 Pre-Lab Reading

MATLAB is a commercial software product produced by MathWorks. The software in-
cludes both a numeric computing environment and a programming language, though “MAT-
LAB” often refers to the programming language. MATLAB is commonplace in industry
and academia. You will benefit from understanding the basics of using MATLAB.

1

Many university students can obtain student versions of MATLAB for free. Instructions
for Iowa State University students can be found here: https://it.engineering.iastate.
edu/how-to/installing-matlab/. Free alternatives to MATLAB include GNU Oc-
tave (https://www.gnu.org/software/octave/), Scilab (https://www.scilab.org/),
and FreeMat(http://freemat.sourceforge.net/).

MATLAB stands for “MATrix LABoratory,” as it was first developed to allow university
students to easily use numeric computing software for linear algebra. Part of what makes
MATLAB easy to use is that there is no need to compile MATLAB code before running
it. Code can be entered and executed line by line in the Command Window. Reflecting its
roots in linear algebra1, all variables are essentially matrices by default. Variables do not
have to be declared before they are used, and usually it is unnecessary to specify the class
of a variable. These factors make it easy to get started in MATLAB, though they can be
disorienting for those used to compiled languages like C, C++, and Java.

4 Lab Exercises

4.1 Getting Started

Figure 1: The MATLAB Desktop

Upon starting up MATLAB, you will see the MATLAB Desktop (see Figure 1) which
consists of the Tool Strip, Current Folder window, Command Window, Workspace, and

1Pun intended.

2

https://it.engineering.iastate.edu/how-to/installing-matlab/
https://it.engineering.iastate.edu/how-to/installing-matlab/
https://www.gnu.org/software/octave/
https://www.scilab.org/
http://freemat.sourceforge.net/

Command History. The purpose of these windows is largely self-explanatory, but we will
touch on them occasionally as necessary. Perhaps the best way to jump into MATLAB is
to learn how to get help. You can simply type help followed by the name of a function to
get help on that function. You can even get help for the function help:

1 >> help help

Another great way to get help is with the doc command. Whereas help gives you
a (usually) brief explanation in the Command Window, doc opens up more thorough
documentation in a new window. Use the doc command to find out about the many ways
to use the colon (:) in MATLAB:

1 >> doc colon

MATLAB also has built in demos to help you use various functions and tools. You can
type help demo to learn about how to run the examples, or you can just type demo to open
up a new window with featured examples. Find and click on the “Basic Matrix Operations”
demo. This will display the demo in the help window. Click the “Open Live Script” button
in the upper right. This will open the demo as a live script in MATLAB’s Live Editor.
Step through the live script by clicking the “Run Section” or “Run and Advance” buttons
in the Live Editor’s Tool Strip. Make sure you understand what is happening with each
command. (Most of you probably don’t know what it means to “convolve” two vectors yet,
but you will in a few weeks!)

4.1.1 Solving Systems of Linear Equations

Figure 2: A simple circuit

Now that you have seen an example of solving a matrix equation y = Hx for x, let’s
apply this to something you know. Consider the circuit shown in Figure 2. In EE 201, you
learned that the voltages v1, v2, and v3 in this circuit can be found via the Node Voltage
Method. Assuming you remember how to do that, you will arrive at the following set of

3

equations:

v1 − 10

100
+

v1
1000

+
v1 − v2

270
= 0

v2 − v1
270

+
v2

3300
+
v2 − v3

480
= 0

v3 − v2
480

+
v3
50

= 0.1

We can rewrite these as a matrix vector equation:
1

100
+ 1

1000
+ 1

270
−1
270

0

−1
270

1
270

+ 1
3300

+ 1
480

−1
480

0 −1
480

1
480

+ 1
50

v1

v2

v3

 =

10
100

0

0.1

Use MATLAB to solve for the voltages v1, v2, and v3. Be sure to include the code you used
in your lab report.

HINT: You can use the diary function to keep track of the commands you use in
MATLAB. Type help diary to find out how.

4.1.2 Complex Numbers in MATLAB

Figure 3: An RC circuit

Consider the A/C circuit shown in Figure 3. Recall that the steady-state response of
this circuit can be found using phasors. In the phasor domain, we can use a voltage divider

to find the phasor voltage on the capacitor: VC =
−j 100

3

50−j 100
3

56 10◦. Rearranging and recalling

that the phasor notation 5 6 10◦ means 5ej10
π

180 , we have:

VC =
1

j1.5 + 1
5ej

π
18 (1)

Let’s use MATLAB to find VC .
MATLAB naturally handles complex numbers and complex arithmetic. There are sev-

eral ways to represent the imaginary unit (
√
−1). Try typing the following in MATLAB.

4

1 >> a = i;

2 >> b = j;

3 >> c = 1i;

4 >> d = 1j;

5 >> a, b, c, d

You should see that MATLAB displays the value of each variable as 0.0000 + 1.0000i. You
can check that this is indeed

√
−1 by using the equality operator “==”:

1 >> a == sqrt(-1)

Notice the difference between assignment (=) and equality (==).
Now we can solve Equation (1) in MATLAB. Rather than just typing in the right-hand

side of the equation, we will use variables for each quantity:

1 >> om = 3000; C = 1e-5; R = 50;

2 >> Vs = 5*exp(1i*10*pi /180);

3 >> Zc = -1i/om/C;

4 >> Zr = R;

5 >> Vc = Zc/(Zr+Zc)*Vs

MATLAB should display an answer of 1.9158 - 2.0055i. Before we explore what that
means, there are a few important things to notice about MATLAB in these lines. First, we
can type lots of commands on one line; separating by a semicolon (;) stops MATLAB from
displaying the result of each. (Try using a comma (,) instead.) Second, angles in MATLAB
are assumed to be in radians, so we converted 10◦ to 10π/180 radians. Third, the number
π is built in to MATLAB. Other built-in values include infinity (inf), not-a-number (NaN),
and the output of the last command (ans)2. Fourth, MATLAB uses order of operations
the way most scientific calculators and other programming languages do. You can find out
exactly how MATLAB orders operations by typing “operator precedence” in the search bar
in the upper right corner of the MATLAB desktop.

Using MATLAB we found that VC = 1.9158 − 2.0055i V; however, we would like to
have the answer in phaser form. In MATLAB we can use abs and angle to convert VC to
polar form or phasor form. Try it yourself. Once you have the magnitude and phase of the
capacitor voltage, find the time-domain voltage, vC(t), and record this in your lab report.
Remember to use a degree sign (◦) if you choose to report the phase angle in degrees.

There are a few other commands that are useful when working with complex numbers.
You can type real(Vc) or imag(Vc) to get ther real or imaginary parts of Vc. conj(Vc)

returns the complex conjugate of Vc.

1 >> real(Vc)

2

3 ans =

4

5 1.9158

2ans is really a variable in MATLAB which automatically takes on the value of the last output.

5

6

7 >> imag(Vc)

8

9 ans =

10

11 -2.0055

12

13 >> conj(Vc)

14

15 ans =

16

17 1.9158 + 2.055i

4.1.3 Vectorization

MATLAB is optimized for operations involving matrices and vectors. For example, we
could use the following code to multiply matrices A and B and store the result in matrix
C (assuming C has been initialized to all zeros):

1 >> for x = 1:size(A,1)

2 >> for y = 1:size(B,2)

3 >> for z = 1:size(A,2)

4 >> C(x,y) = C(x,y) + A(x,z) * B(z,y);

5 >> end

6 >> end

7 >> end

Not ony is this annoying to type, but it also executes less efficiently than simply typing:

1 >> C = A*B;

Likewise, matrix-vector products can be found by typing y = H*x for matrix H and vectors
x and y. We can multiply matrices or vectors by scalars by simply typing a*H or a*y.
Almost all MATLAB operations are designed to be applied to matrices. In fact, it is
good programming practice to avoid for loops in MATLAB (though sometimes they are
unavoidable).

Let’s use vectorization to our advantage. Suppose we want to know the steady-state
output voltage VC for the circuit in Figure 3 for the following input voltages:

• vS(t) = 5 cos (3000t+ 10◦) V

• vS(t) = 5 cos (3000t+ 20◦) V

• vS(t) = 10 cos (3000t+ 25◦) V

• vS(t) = 15 cos (3000t) V

6

Since all the sources have the same frequency (3000 radians/s), we can convert these to
phasors and vectorize Equation (1):

1 >> Vs = [5* exp(1i*10*pi /180); 5*exp(1i*20*pi /180); ...

2 10* exp(1i*25*pi /180); 15];

3 >> Vc = Zc/(Zr+Zc)*Vs

This creates a column vector of source voltages in phasor form, Vs, and a column vector of
capacitor voltages in phasor form, Vc. (The ellipsis (...) allows you to write one MATLAB
command on multiple lines.) We have solved all four circuit analysis problems at once! Use
abs and angle to convert the answers to the time domain and record these in your report.

4.2 Working with Signals in MATLAB

Strictly speaking, MATLAB (and digital computers in general) can only operate on discrete-
time, discrete-amplitude signals. Furthermore, digital computers can only store a finite
number of signal values at a time. Recall that a signal is a function of one or more inde-
pendent variables, and those independent variables are integers for discrete-time signals.

Consider the discrete-time signal x[n] = cos (2π0.01n). We can represent this signal as
a vector in MATLAB for the range of integers n = 0, 1, 2, . . . , 9 as follows:

1 >> n = 0:9;

2 >> x = cos (2*pi *0.01*n)

The ten values stored in the array x should display as a row vector. We can change this to
a column vector using an apostrophe (’):

1 >> y = x’

MATLAB indexes arrays starting with the number 1, not the the number 0 as many
other programming languages do. (This can be confusing if you are used to C/C++ or
Java.) Thus, typing x(1) in MATLAB will display 1.0000, which is equal to cos (2π0.01(0)),
whereas typing x(0) will result in an error. As you saw in the documentation for the colon
operator in Section 4.1, you can access various subsets of the vector x as follows:

1 >> x(4:7)

2

3 ans =

4

5 0.9823 0.9686 0.9511 0.9298

6

7 >> x(1:2: end)

8

9 ans =

10

11 1.0000 0.9921 0.9686 0.9298 0.8763

12

7

13 >> x(2:2: end)

14

15 ans =

16

17 0.9980 0.9823 0.9511 0.9048 0.8443

These are the fourth through seventh, odd-numbered, and even-numbered elements of the
vector x, respectively.

4.2.1 Plotting Signals

Often signals of interest are functions of time. In the discrete-time case, the integers that
index a signal correspond to different points in time. Let’s create another signal:

1 >> t = -0.01:1/44100:0.01;

2 >> x = cos (2*pi *440*t); % Don ’t forget the semicolon!

The first line created an array called t, which we are using to store values of time in seconds.
The second line created an array called x, which holds the values of our signal as a function
of time.

MATLAB includes many built-in functions for plotting. We will start with the simplest:
plot.

1 >> figure; plot(t,x)

The command figure opens up a new figure window. It is good practice to use figure

before plot; otherwise the plot command will use the last figure window that was used and
overwrite whatever was plotted there. The plot command plots the values in array x as a
function of the values in array t. What happens if you omit t? Type the following to find
out:

1 >> figure; plot(x)

Describe what happens in your lab report.
Let’s recreate the first plot and add some labels.

1 >> figure; plot(t,x)

2 >> xlabel(‘time (s)’)

3 >> ylabel(‘amplitude (V)’)

4 >> title(‘A plot of voltage vs. time ’)

Describe what xlabel, ylabel, and title do in your lab report. Make sure to label your
graphs in all your lab reports!

We can plot more than one signal on the same figure. Let’s add a sinusoid at a lower
frequency and amplitude. Use the hold command to add the new signal to the plot.

1 >> hold on

2 >> y = 0.5* cos(2*pi *349.23*t);

3 >> plot(t,y)

8

Using hold on allows us to plot a new signal without erasing the signals already on the
plot. If you type hold off, the figure will no longer keep the existing signals when you
type plot. Typing hold by itself toggles the state.

Instead of plotting these two signals on top of each other, we can plot them in separate
windows in the same figure using the subplot command. Let’s plot these two signals and
their sum:

1 >> figure;

2 >> subplot (3,1,1)

3 >> plot(t,x)

4 >> xlabel(‘time (s)’), ylabel(‘voltage (V)’)

5 >> subplot (3,1,2)

6 >> plot(t,y)

7 >> xlabel(‘time (s)’), ylabel(‘voltage (V)’)

8 >> subplot (3,1,3)

9 >> plot(t,x+y)

10 >> xlabel(‘time (s)’), ylabel(‘voltage (V)’)

11 >> title(’Three signals in subplots ’)

The first two arguments to subplot specify the layout of windows within the figure. In
our example, subplot(3, 1, n) specifies a three by one layout, so we have three subplots
in a column. The third number, n, specifies which of the subplots to use. For rectangular
layouts, n itemizes subplots by column (so subplot(3,2,4) would plot in the upper right
of a three by two layout).

MATLAB offers a lot more plotting functionality. Step through the “Creating 2-D
Plots” live demo to see some examples. (Type “demo” in MATLAB to display available
demos in the help window if it is not still open.) Other useful plotting commands include
semilogx, semilogy, loglog, and axis. Use help to learn about these.

The plot command connects each data point with a straight line, making a signal appear
to be continuous-time. What plotting command from the demo could you use to emphasize
that a signal is discrete-time? Explain your answer in your report.

4.2.2 Sounds

Note: MATLAB’s ability to play sounds through speakers or headphones depends on how
the host system is configured. If you are trying this on your own machine, you may need
to change the settings.

Signals representing sound and imagery are extremely helpful for developing intuition.
Let’s use MATLAB to generate some sounds. A sampling rate of 44.1 kHz is typical for
music. We will learn later in class that this allows recording of music with frequencies up
to 22.05 kHz. Most humans cannot hear frequencies above about 20 kHz, so this sampling
rate makes sense.

1 >> Fs = 44100; % 44.1 kHz sampling rate

2 >> Ts = 1/Fs; % this is the sampling period or sampling interval

9

3 >> t = -0.5:Ts:0.5;

4 >> x = 0.3* cos (2*pi*440*t);

At this point we have created one second of audio in the vector x. The next command will
send this signal to the speakers at the appropriate sampling rate. Before you hit Enter,
be sure to turn the volume down (especially on headphones). You can turn it up latter as
necessary.

1 >> sound(x,Fs)

You should hear one second of a pure ‘A’ (440 Hz).
We can make more interesting sounds with the help of some new MATLAB commands.

The commands zeros(m, n) and ones(m, n) are extremely useful. They create m-by-n
arrays of zeros and ones, respectively:

1 >> zeros (2,5)

2

3 ans =

4

5 0 0 0 0 0

6 0 0 0 0 0

7

8 >> ones (1,3)

9

10 ans =

11

12 1 1 1

We can create a unit step signal using zeros(m, n) and ones(m, n) as follows.

1 >> u = [zeros (1 ,22050) , ones (1 ,22051)];

Notice the notation we used to create the vector u. In general, typing [A, B] will concate-
nate the matrices (or vectors) A and B. The comma (,) puts the matrices side-by-side, so A

and B must have the same number of rows for this to work. The semicolon (;) concatenates
matrices on top of one another (assuming they have the same number of columns).

Now lets make another sound signal using our unit step function.

1 >> y = 0.3* cos(2*pi *349.23*t);

2 >> s = x + u.*y;

The last line adds the vector x to another vector formed by multiplying y by a unit step.
The “dot multiply” notation (.*) tells MATLAB to multiple the vectors point-wise rather
than using a vector product. Now we are ready to play our new signal.

1 >> sound(s,Fs)

Describe what you hear in your lab report.

10

4.2.3 Images

Usually we deal with signals that are a function of one independent variable, such as the
sound signals we just created. Signals can be functions of two or more independent variables
as well. Images are two-dimensional signals where the two independent variables are the
x and y coordinates. The dependent variable is either a grayscale value or a color (often
represented by three dependent variables: R, G, and B). Future labs will explore images
and image processing; this section will briefly introduce images in MATLAB.

We can use zeros(m, n), ones(m, n), and concatenation to make a very boring image.

1 >> im = [zeros (20,20), ones (20 ,20); ones (20,20), zeros (20 ,20)];

2 >> figure; imshow(im)

We could make the image a little more exciting by repeating a few times.

1 >> board = repmat(im ,4,4);

2 >> figure; imshow(board)

The command repmat(im,4,4) repeats the matrix im in an four by four grid.
Without other arguments, imshow assumes images to be grayscale with zero correspond-

ing to black and one corresponding to white. Color images can be displayed by providing
a colormap.

1 >> load clown.mat

2 >> figure; imshow(X,map)

MATLAB also provides the commands image and imagesc to display images. These
assume color images, but the default colormap is not always appropriate. Pixel values
should range from 0 to 255 when using image (assuming a colormap of 256 values). When
using imagesc, the pixel values are automatically scaled to fit the colormap.

Try the following commands and explain any differences that you observe between
imshow, image, and imagesc.

1 >> figure; imshow(X,map)

2 >> figure; image(X)

3 >> colormap(map)

4 >> figure; imagesc(X)

5 >> colormap(map)

4.3 Report Checklist

Be sure the following are included in your report.

1. Section 4.1.1: Code to solve DC circuit and solution

2. Section 4.1.2: Solution for vC(t)

3. Section 4.1.3: Solution for vC(t) for four vS(t) input signals

11

4. Section 4.2.1: Description of what happens when plotting x without t

5. Section 4.2.1: Description of xlabel, ylabel, and title

6. Section 4.2.1: Description of how to emphasize a discrete-time signal in a plot

7. Section 4.2.2: Description of the sound you hear

8. Section 4.2.3: Explanation of the differences you observe

References

[1] MathWorks MATLAB Website. MATLAB, The MathWorks, Inc.,
https://www.mathworks.com/products/matlab.html

[2] “MATLAB Installation Instructions.” Iowa State University Information Technology,
Iowa State University of Science and Technology,
https://www.it.iastate.edu/services/software-students/matlab

[3] Eaton, John W. GNU Octave Website. GNU Octave, John W. Eaton,
https://www.gnu.org/software/octave/

[4] Scilab Website. Scilab, ESI Group,
https://www.scilab.org/

[5] FreeMat Website. FreeMat, SourceForge,
http://freemat.sourceforge.net/

12

https://www.mathworks.com/products/matlab.html
https://www.it.iastate.edu/services/software-students/matlab
https://www.gnu.org/software/octave/
https://www.scilab.org/
http://freemat.sourceforge.net/

Synthesis of Sinusoidal Signals using Tuning Forks

EE 224: Signals and Systems I

1 Overview

Tuning forks are physical systems that generate sinusoidal signals. When a tuning fork
is exposed to vibration, it disturbs nearby air molecules, creating regions of higher-than-
normal pressure (called compressions) and regions of lower-than-normal pressure (called
rarefactions). A microphone converts these variations to an electrical signal which can
be digitized with an analog-to-digital converter (ADC). The digital signal can be recorded,
analyzed, processed, and replayed through a digital-to-analog converter (DAC) and speaker.
This lab allows you to analyze sounds produced by tuning forks.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Use the CyDAQ to record data

2. Write and use a MATLAB function

3. Measure the period of a signal

4. Determine the fundamental frequency of a measured signal

3 Pre-Lab Reading

Read the lab manual and the “Getting Started with the CyDAQ” document. Also read the
Wikipedia on tuning forks (in particular to see how the frequency of a fork is calculated).
This lab uses tuning forks with frequencies ranging from 128 Hz to 4096 Hz. Assuming
that the stiffness of the tuning forks is the same, how does the length of a tuning fork
change as the frequency increases? Enter your answer in the Canvas pre-lab and verify
your hypothesis when you get to the lab.

Do not strike the tuning forks on the table.

13

https://en.wikipedia.org/wiki/Tuning_fork

4 Lab Exercises

4.1 Overview

In this lab, you will be introduced to the CyDAQ, a device created specifically for this
course. The CyDAQ is capable of recording signals from a variety of sensors, and storing
the data in a way that can be easily used in MATLAB. For more information, refer to the
Getting Started with CyDAQ document on Canvas.

Using a tone generator smartphone app, a pure sinusoidal tone can be generated and
recorded using the microphone on the CyDAQ. In order to observe a decaying signal, a
tuning fork can also be used. The CyDAQ will convert the generated sound to an electrical
signal, which in turn is converted to a sequence of numbers stored in a digital file which
can be displayed on computer screen as a sinusoidal curve. Characteristics of the sound
wave, such as its period T and frequency f can be determined from this curve. Knowing
the wave’s period, its frequency f is easily computed using the formula:

f = 1/T

4.2 MATLAB Preliminaries

In this section, you will write an m-file function that takes a sound signal at a specific
sampling rate and plots the FFT (Fast Fourier Transform) of the signal. You will need to
import the data recorded from the CyDAQ into MATLAB. Your function should take the
‘data’ vector imported from the CyDAQ, and the sampling rate, Fs.

4.2.1 Introduction to Using Functions in MATLAB

Functions are m-files that can accept input arguments and return output arguments. The
names of the m-file and of the function should be the same. Functions operate on variables
within their own workspace, separate from the workspace you access at the MATLAB
command prompt. The first line of a function m-file starts with the keyword function. It
gives the function name and order of arguments. A simple function, called compmag5 that
computes five times the magnitude of a complex number of the form x+ jy is given below.
In this case, there are two input arguments and one output argument.

1 function [z] = compmag5(x,y);

2 % % % % % % % % %

3 % this function computes the magnitude of the complex number

4 % x+jy and returns it in variable z.

5 % Inputs:

6 % x - real part of complex number

7 % y - imaginary part of complex number

8 %Outputs:

9 %z - magnitude of complex number times 5

14

10 %written by J.A. Dickerson , January , 2005

11 a=5;

12 % compute magnitude and multiply

13 z = a * sqrt(x^2+y^2);

The next several lines, up to the first blank or executable line, are comment lines that
provide the help text. These lines are printed when you type

1 >>help compmag5

The first line of the help text is the H1 line, which MATLAB displays when you use the
lookfor command or search a directory with MATLAB’s Current Folder browser. The rest
of the file is the executable MATLAB code defining the function. The variable a introduced
in the body of the function, as well as the variables on the first line, m, x and y, are all local
to the function; they are separate from any variables in the MATLAB workspace. This
means that if you change the values of any variables with the same name while you are in
the function, it does not change the value of the variable in your workspace.

If no output argument is supplied, the result is stored in ans. You can terminate any
function with an end statement but, in most cases, this is optional. Functions return
when the end of the function is reached. The function is used by calling the function
within MATLAB or from a script. For example, the commands below can be used to call
compmag5 and get a result of m = 14.1421.

1 >> x=2; y=2; m=compmag5(x,y);

4.2.2 Writing an FFTPlot Function

For this lab, you will need a function that plots the frequency spectrum of a recorded signal.
This function can also be reused in future labs. Using the FFT function in MATLAB will
allow you to do so. For more information, refer to the following link: https://www.

mathworks.com/help/matlab/ref/fft.html. Be sure to plot the amplitude spectrum
with amplitude on the y-axis and frequency on the x-axis. You function should take as
input arguments the ‘data’ vector imported from the CyDAQ, and the sampling frequency
(Fs) used when collecting the signal.

The following will help you get started:

1 function [] = FFTPlot(data , Fs)

2 % FFTPlot: convert data vector from time domain to frequency

3 % domain

4 % data: imported ‘data ’ vector from the CyDAQ

5 % Fs: sampling frequency specified on the CyDAQ

6

7

8

9 end

15

https://www.mathworks.com/help/matlab/ref/fft.html
https://www.mathworks.com/help/matlab/ref/fft.html

4.2.3 Labeling Plots in MATLAB

It is very important to label all plots and graphs submitted with your lab report. Recall
how to use the functions xlabel, ylabel, and title from Lab 1. The axis command can
be used to set the beginning and end values for the graph axes. For example, if the time
should start at 2 s and end at 5 s and the recorded signal should range between 0 and 10
volts, use the command axis([2, 5, 0 10]);. Type help axis for more information.

4.3 Signal Collection

A. First, using the CyDAQ, collect signals generated by a tone generator app. Refer
to the ‘Getting Started with CyDAQ’ document for instructions. Collect the signals
using a sampling frequency of 8000 Hz on Channel 0, with ‘No Filter’ selected. Select
two frequencies greater than 150 Hz and less than 1000 Hz. For each of the selected
frequencies, plot both the time domain of the signal (plot(time,data)) and the
frequency domain of the signal (FFTPlot(data,Fs)) in the same figure using subplot.
Remember to include title and axis labels for both subplots! Include these plots in
your report.

B. Use the data cursor tool to measure the frequency. In the frequency domain plot, this
can be done by finding the x coordinate of a peak value. In the time domain plot,
this can be done by measuring the time difference between two peaks. (The time
difference between two consecutive peaks would give the period.) You may be able
to achieve better accuracy by measuring the time it takes for N peaks to occur, then
dividing by N−1. Verify that your two frequency measurements are reasonably close
to each other. How do your measurements compare to the frequency you specified
in the tone generator? Explain any discrepancies between your measured data and
your expected value.

C. Next, collect tuning fork signals. Use the CyDAQ to collect signals for two different
tuning forks with frequencies at or under 2048 Hz using a sampling frequency of
8000 samples/sec. Repeat parts A and B for each of the tuning forks. How do your
measurements compare to the frequency listed on the tuning fork you used? Explain
any discrepancies between your measured data and the expected frequency. Note: If
your measured frequency is not reasonably close to the tuning fork frequency, it is
possible that you are collecting data for too long. With your lab partner, have one
person strike the tuning fork and one person push start and stop. Stop data collection
within three seconds of starting.

D. Measure how the amplitude in the signal falls off over time for each of the tuning
forks. Provide an annotated figure that shows how you measured the signal decay.

16

Figure 1: Example tuning fork recording.

E. Comment on the other signals present in the spectrum. Why don’t you see a nice
clean delta function in the frequency plot?

F. Fill in the table below as part of your report. Include entries for the ‘Frequency
Estimate from Time Plot’ and the ‘Frequency Estimate from Frequency Plot’ for
both frequencies from the tone generator as well as the entries for both tuning forks.

Signal Source
Frequency Estimate
from Time Plot (Hz)

Magnitude Decay
Rate (V/s)

Frequency Estimate
from Frequency Plot
(Hz)

Tuning fork
labeled 1024

Signal genera-
tor 440 Hz

N/A

17

4.4 Report Checklist

Be sure the following are included in your report.

1. All your MATLAB code in an appendix of the report (including your FFTPlot func-
tion)

2. Section 4.3A.: Time and frequency plots of data measured from a tone generator app

3. Section 4.3C.: Time and frequency plots of data measured from a tuning fork

4. Section 4.3B.: Frequency measurements of the tone generator app’s signal from time
and frequency plots (report in table)

5. Section 4.3C.: Frequency measurements of the tuning fork from time and frequency
plots (report in table)

6. Section 4.3B.: Explanation of discrepancies between measured and expected frequen-
cies

7. Section 4.3D.: Plot and measurement of tuning fork amplitude decay (report estimate
in table)

8. Section 4.3E.: Comment on other signals in the spectrum

18

Impulse Response and Auralization

EE 224: Signals and Systems I

1 Overview

“Auralization” is the process of using a computer to create or reproduce sound, often to
achieve a desired sound effect. This is done by simulating characteristics of a room or
other environment in order to produce sound that seems to have been recorded in that
environment. Auralization is an increasingly popular technique for accurately simulating
reverberation using acoustic impulse responses (IRs) from interesting buildings, spaces, and
other sources. It is also used in video game and film production to create realistic sound
effects.

Bring headphones to this lab!

2 Learning Objectives

By the end of this lab, students will be able to:

1. Use a real-world impulse response to simulate different environments using discrete-
time convolution

2. Describe FM modulated signals and chirp signals

3. Interpret a spectogram

3 Pre-Lab Reading

3.1 Auralization and Background

EchoThief (http://www.echothief.com) collects interesting IRs from “unusually clam-
orous places” for anyone to use. You can read about how these IRs are created here.
A similar process is described in Section 3.1.1 This lab will use the computed impulse
responses to approximate the sound of a signal in different environments.

19

http://www.echothief.com
http://www.echothief.com/echothief/

3.1.1 Signal Acquisition

Ideally, we could obtain the acoustic impulse response of a space by producing an impulse
signal and measuring the sound it produces in a given space. Unfortunately, impulse
functions can only be approximated in the real world. One way to do this is to produce a
short, tall (i.e., loud) pulse, but this requires a large amount of power (equal to the energy
of the pulse divided by the pulse width). Requiring both more energy and a shorter pulse
makes electrical power handling a limiting factor in such a system. The output stage of a
transmitter can only handle so much power without destroying itself.

Chirp signals provide a way of breaking this limitation while still exciting a broad range
of frequencies. (Knowing the impulse response is equivalent to knowing how the system
responds to a sinusoid at any frequency.) A chirp signal is a sinusoid whose frequency
changes from a starting frequency to an ending one. To generate a chirp, an impulse is
passed through a chirp system. After the chirp echoes are received, the signal is passed
through an antichirp system which converts the chirp echoes to an impulse response as
shown in Figure 1 below. This phenomenon is called waveshaping. Often a logarithmically
swept sine wave is used as a chirp signal.

Figure 1: An impulse response measurement system

3.1.2 Chirp Signals

Many interesting signals can be produced by changing the argument of a generalized sinu-
soid as different functions of time. This is called FM synthesis or Frequency Modulation1

and is used to create instrument simulations, interesting sound effects, improve perfor-
mance of radar systems, etc. A chirp signal is a sinusoid whose frequency sweeps from a
starting frequency to an ending one. A “standard” sinusoid has

x(t) = A cos (Ψ(t)) Ψ(t) = ωt+ φ

1In FM radio, the argument of the sinusoid contains the audio signal.

20

However, much more interesting signals can be created with different functions such as a
quadratic, logarithmic, or sinusoid as shown below.

Ψ(t) = 2πµt2 + 2πf0t+ φ

Ψ(t) = eat + 2πf0t+ φ

Ψ(t) = cos (2πf1t) + 2πf0t+ φ

The frequency spectra of these signals are hard to analyze; however, a decent approxi-
mation of signal behavior can be found by looking at the first derivative of the argument
function. This is known as the instantaneous frequency, fi, of the signal. The instantaneous
frequency of the linear, quadratic, and logarithmic chirp are:

Linear : fi(t) = f0 + βt β =
f1 − f0
t1

Quadratic : fi(t) = f0 + βt2 β =
f1 − f0
t21

Logarithmic : fi(t) = f0β
t β =

(
f1
f0

)1/t1

Figure 2 below shows the linear chirp system. For the problem of auralization, a loga-
rithmically swept sinusoid is used.

Figure 2: Impulse response of a linear chirp signal (from Figure 11-10 of The Scientist and
Engineers Guide to Signal Processing by Steven W. Smith, [2])

These signals can be generated using the Matlab command chirp.
y = chirp(t,f0,t1,f1,‘method’,phi)

The command generates samples of a swept-frequency cosine signal at the time instances
defined in array t, where f0 is the instantaneous frequency at time 0, and f1 is the instan-
taneous frequency at time t1. f0 and f1 are both in hertz. If unspecified, f0 = e−6 for
logarithmic chirp and 0 for all other methods, t1 = 1, and f1 = 100.

21

3.1.3 Spectrograms

In addition to looking at signals in the time domain, it is often useful to look at the
spectrum of a signal. A signal’s spectrum shows which frequencies are present in the signal.
A constant frequency sinusoid spectrum consists of two impulse functions at ±2πf0. For
more complicated signals, there may be many spikes. For even more complicated signals
such as music or frequency modulated signals, the spectrum changes with time. In these
cases, the spectrogram of a signal is used instead of a spectrum. A spectrogram is found
by estimating the spectrum over multiple short windows of time. The magnitude of the
spectrum over these time “windows” is plotted as intensity or color on a two dimensional
plot with time on one axis and frequency on the other.

In Matlab, the function spectrogram will be used to compute the spectro-
gram. The spectrogram function divides a signal into segments. Longer seg-
ments provide better frequency resolution; shorter segments provide better time resolu-
tion. For more information, see http://www.mathworks.com/help/signal/examples/

practical-introduction-to-time-frequency-analysis.html. There are theoretical
limits on how well short pieces of the signal can represent the frequency content in a
signal. Generally, longer time windows give better frequency resolution. The spectrogram
function can be called as follows: spectrogram(xx, 1024, 512, [], Fs). The first argu-
ment, xx, is the time signal, 1024 is the number of samples in the time window, 512 is the
number of samples of overlap between the time windows, and Fs is the sampling frequency.
NOTE: the spectrogram function requires the Matlab signal processing toolbox.

In order to see what the spectrogram function does, run the following code.

1 N = 1024;

2 n = (0:N-1);

3 w0 = 2*pi/5;

4 x = sin(w0*n)+10* sin(2*w0*n);

5 spectrogram(x,128 ,64 ,[] ,100);

To see the spectrogram of a chirp, replace x = sin(w0*n)+10*sin(2*w0*n); with a chirp
signal.

4 Lab Exercises

4.1 Using a Computed Impulse Response and Convolution

Implement sound effects on a provided sound clip and impulse responses of your choice.

(a) Go to EchoThief and select an interesting location. Download the impulse response
associated with the place you chose. The file you downloaded should be a .wav file.

(b) Examine your impulse response. To do this, you will first need to load it into MAT-
LAB using [v, Fs] = audioread(file.wav). What is the sampling rate of this
impulse response? How many samples long is your IR? How long in seconds is your

22

http://www.mathworks.com/help/signal/examples/practical-introduction-to-time-frequency-analysis.html
http://www.mathworks.com/help/signal/examples/practical-introduction-to-time-frequency-analysis.html
http://www.echothief.com

IR? Plot your IR as a function of time, with the time in seconds. Comment on the
plot in your report. Is this a mono or stereo recording? You can listen to your IR by
typing soundsc(v, Fs) in MATLAB.

(c) Download one of the two voice files from Canvas (female voice: spfe49 1.wav or male
voice: spme50 1.wav). Load this audio file into MATLAB. What is the sampling rate
of this file? Is this a mono or stereo recording? How many samples are in the signal?
Listen to the audio. What is the voice talking about?

(d) Now for the fun part! We want to make it sound like the voice is coming from the
location corresponding to your IR. We can do this by convolving the speach signal
with the impulse response. Suppose your voice signal is v[n] and the IR is h[n]. The
convolution y[n] = v[n] ∗ h[n] will produce a speach signal that sounds like it was
recorded at the location you picked. It MATLAB, you can type y = conv(v,h) to
convolve the signals.

(i) NOTE 1: make sure your voice signal and IR are recorded at the same sampling
rate, otherwise you will need to use resample on one of them.

(ii) NOTE 2: if your voice signal or IR (or both) were recorded in stereo, you will
have to pick one of the two channels to use before calling conv. You can select
the first column of a matrix h by typing h1 = h(:,1).

(e) You can play back your new voice by typing soundsc(y,Fs).2 Describe what you
hear in your report.

(f) Feel free to experiment with IRs from different locations and different sound files, but
leave enough time to finish Section 4.2.

4.2 Investigating Frequency Modulated (FM) Signals

A chirp signal is also known as a swept frequency cosine. The frequency of the cosine
changes in time. The frequency can change in many different ways as seen in Figure 3
for linear and quadratic sweeps. We will focus on a linear sweep where the instantaneous
frequency is linear as shown in Figure 3a. Figure 3b shows the case where the instantaneous
frequency is a quadratic.

(a) Use the Matlab chirp command to generate a signal. Find the spectrogram using a
window length of 2048 using the command:

1 spectrogram(x,2048 ,1024 ,[] ,Fs,‘yaxis ’);

Include this plot in your lab report and comment on the shape of the chirp.

2Be sure to use soundsc. The sound function expects to get data ranging from -1.0 to 1.0 (see the help
documentation), so if your audio signal exceeds 1.0 in magnitude, you will here additional distortion not
caused by your IR.

23

(a) Linear chirp (b) Quadratic chirp

Figure 3: Spectrograms of a linear and quadratic chirp

(b) What is the frequency value at t = 1.0 sec for the chirps in Figures 3a and 3b?

(c) As a test case, generate a chirp sound whose frequency starts at 400 Hz and ends at
4000 Hz with a duration of seven seconds and a sampling rate of 44.1 kHz. Listen to
the sound that the chirp makes using the soundsc command in Matlab and include a
listing of the commands that you used to generate the chirp signal and spectrogram.

(d) Synthesize a “chirp” signal with the following parameters: time duration of five
seconds with a sampling frequency of 11,025 Hz, starting frequency of 5000 Hz, and
ending frequency of 20 Hz. Listen to the signal; what does it sound like (e.g., is the
frequency movement linear)? Does it chirp down or up? Create a spectrogram of the
signal to verify that you have the correct instantaneous frequency.

(e) Synthesize a “chirp” signal with the following parameters: time duration of ten sec-
onds with a sampling frequency of 11,025 Hz, starting frequency of 20 Hz, and the
frequency at time t = 1 sec should be 1200 Hz. Listen to the signal; what does
it sound like (e.g., is the frequency movement linear)? Does it chirp down or up?
Create a spectrogram of the signal to verify that you have the correct instantaneous
frequency. Speculate on what is happening with the signal.

4.3 Report Checklist

Be sure the following are included in your report.

Section 4.1

1. Characteristics of the impulse response you chose (length in sec, length in samples,
sampling rate)

24

2. Plot of your IR and comments about it

3. Description of the voice you chose (sampling rate, mono/stero, number of samples,
etc.)

4. Description of your sound effect

Section 4.2

1. Plot of your chirp with comments

2. Frequency values from Figure 3

3. Spectrogram of seven second chirp with code in the appendix

4. Description of five second chirp with spectrogram

5. Description of ten second chirp with spectrogram

References

[1] “EchoThief Impulse Response Library,” EchoThief, SuperHoax,
http://www.echothief.com/

[2] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing,
California Technical Publishing, San Diego, CA, 1997.

[3] Michael Vorländer. Auralization : Fundamentals of Acoustics, Modelling, Simulation,
Algorithms and Acoustic Virtual Reality, Springer, Berlin, Germany, 2008.

25

http://www.echothief.com/

Frequency Response: Notch and Bandpass Filters

EE 224: Signals and Systems I

1 Overview

The goal of this lab is to study the response of finitie impulse response (FIR) filters to inputs
such as complex exponentials and sinusoids. In the experiments, you will use MATLAB’s
conv function to implement filters in the time domain and freqz to obtain each filter’s
frequency response. As a result, you should learn how to characterize a filter by knowing
how it reacts to different frequency components in the input. This lab also introduces
two practical filters: bandpass filters and nulling filters. Bandpass filters can be used to
detect and extract information from sinusoidal signals, e.g., tones in a touch-tone telephone
dialer. Nulling filters can be used to remove sinusoidal interference, e.g., jamming signals
in a radar or 60 Hz power signals from lights.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Plot the frequency response of an FIR filter

2. Implement and apply an FIR filter in MATLAB

3. Design an FIR filter for nulling frequency components

4. Design an FIR filter for isolating specific frequencies

3 Pre-Lab Reading

3.1 Frequency Response of FIR Filters

The output or response of a filter for a complex sinusoidal input, ejΩ, depends on the
frequency, Ω. Often a filter is described solely by how it affects different input frequencies–
this is called the frequency response. For example, the frequency response of the two-point

26

averaging filter

y[n] =
1

2
x[n] +

1

2
x[n− 1]

can be found by using a general complex exponential as an input and observing the output
or response.

x[n] = Aej(Ωn+φ)

y[n] =
1

2
Aej(Ωn+φ) +

1

2
Aej(Ω(n−1)+φ)

= Aej(Ωn+φ) 1

2

(
1 + e−jΩ

)
= Aej(Ωn+φ)H

(
ejΩ
)

(1)

In (1) there are two terms, the original input and a term that is a function of Ω. This
second term is the frequency response, and it is commonly denoted by H(ejΩ), which in
this case is

H(ejΩ) =
1

2

(
1 + e−jΩ

)
Once the frequency response, H(ejΩ), has been determined, the effect of the filter on
any complex exponential may be determined by evaluating H(ejΩ) at the corresponding
frequency. The output signal, y[n], will be the original input complex exponential signal
times a complex number. The phase of this number imparts a phase shift and the magnitude
describes the gain applied to the complex exponential. The frequency response of a general
finite impulse response (FIR) linear, time-invariant system is

H(ejΩ) =
M∑
k=0

bke
−jΩk (2)

In the example above, M = 1 and b0 = b1 = 1
2
.

3.2 MATLAB Function for Frequency Response

MATLAB has a built-in function called freqz for computing the frequency response of a
discrete-time LTI system. The following MATLAB statements show how to use freqz1

to compute and plot both the magnitude (absolute value) and the phase of the frequency
response of a two-point averaging system as a function of Ω in the range −π ≤ Ω ≤ π:

1If the output of the freqz function is not assigned, then plots are generated automatically; however,
the magnitude is given in decibels which is a logarithmic scale. For linear magnitude plots a separate call
to plot is necessary.

27

1 bb = [0.5, 0.5]; \% Filter Coefficients

2 ww = -pi:(pi /100): pi; \% omega

3 HH = freqz(bb , 1, ww);

4 subplot (2,1,1);

5 plot(ww, abs(HH)); axis([-pi,pi ,0 ,1]);

6 subplot (2,1,2);

7 plot(ww, angle(HH)); axis([-pi,pi ,-2,2]);

8 xlabel(‘Normalized Radian Frequency ’)

For FIR filters, the second argument of freqz must always be equal to 1. The frequency
vector ww should cover an interval of length 2π for Ω, and its spacing must be fine enough
to give a smooth curve for H(ejΩ). Note: we will always use capital HH for the frequency
response in this lab.

3.3 Periodicity of the Frequency Response

The frequency responses of discrete-time filters are always periodic with period equal to
2π. Explain why this is the case by stating a definition of the frequency response and then
considering two input sinusoids whose frequencies are Ω and Ω + 2π:

x1[n] = ejΩn

x2[n] = ejΩn+2πn

Notice that x2[n] = x1[n], so the output will be the same for both inputs. Include your
answer in your lab report.

The implication of periodicity is that a plot of H(ejΩ) only needs to extend
over the interval −π ≤ n ≤ π or any other interval of length 2π.

4 Lab Exercises

4.1 Frequency Response of the Four-Point Averager

Filters that average input samples over a certain interval are called “running average” filters
or “averagers,” and they have the following form (for an L-point averager):

y[n] =
1

L

L−1∑
k=0

x[n− k]

In other words, the impulse response of an L-point averager is:

h[n] =

{
1
L

0 ≤ n ≤ L− 1

0 otherwise

28

(a) Use Euler’s formula, (2), and complex number manipulations to show that the fre-
quency response for the 4-point running average operator is given by:

H
(
ejΩ
)

=
cos (0.5Ω) + cos (1.5Ω)

2
e−j1.5Ω (3)

(b) Implement (3) directly in MATLAB and plot the frequency response. Use a vector
that includes 400 samples between −π and π for Ω. Since the frequency response is a
complex-valued quantity, use abs and angle to extract the magnitude and phase of
the frequency response for plotting. Plotting the real and imaginary parts of H(ejΩ)
is not very informative.

(c) Use freqz in MATLAB to compute H(ejΩ) numerically (from the filter coefficients)
and plot its magnitude and phase versus Ω. Include the appropriate MATLAB code
to plot both the magnitude and phase of H(ejΩ) in your lab report’s appendix. Follow
the example in Section 3.2. The filter coefficient vector for the 4-point averager is
defined via:

1 bb = 1/4* ones (1,4);

Note: the function freqz(bb,1,ww) evaluates the frequency response for all frequen-
cies in the vector ww. It uses the summation in (2), not the formula in (3). The filter
coefficients are defined in the assignment to vector bb. How do your results compare
with part (b)?

4.2 The MATLAB find Function

Often signal processing functions are performed in order to extract information that can be
used to make a decision. The decision process inevitably requires logical tests, which might
be done with if-then constructs in MATLAB. However, MATLAB permits vectorization
of such tests, and the find function is one way to do lots of tests at once. In the following
example, find extracts all the numbers that “round” to 3:

1 xx = 1.4:0.33:5 , jkl = find(round(xx)==3), xx(jkl)

The argument of the find function can be any logical expression. Notice that find returns
a list of indices where the logical condition is true. See help on relop for information.

Now, suppose that you have a frequency response:

1 ww = -pi:(pi /500): pi; HH = freqz(1/4* ones(1,4), 1, ww);

Use the find command to determine the indices where HH is zero, and then use those
indices to display the list of frequencies where HH is zero. Since there might be round-off
error in calculating HH, the logical test should probably be a test for those indices where
the magnitude (absolute value in MATLAB) of HH is less than some rather small number,
e.g., 1 × 10−6. Compare your answer to the frequency response that you plotted for the
four-point averager in Section 4.1.

29

4.3 Nulling Filters for Rejection

Nulling filters are filters that completely eliminate some frequency component. If the
frequency is Ω = 0 or Ω = π, then a two-point FIR filter will do the nulling. The simplest
possible general nulling filter can have as few as three coefficients. If Ω is the desired nulling
frequency, then the following length-3 FIR filter will have a zero in its frequency response
at Ω = Ωn:

y[n] = x[n]− 2 cos (Ω)x[n− 1] + x[n− 2]

For example, a filter designed to completely eliminate signals of the form Aej0.5πn would
have the following coefficients because we would pick the desired nulling frequency to be
Ωn = 0.5π.

b0 = 1, b1 = −2 cos (0.5π) = 0, b2 = 1

(a) Design a filtering system that consists of the cascade of two FIR nulling filters that
will eliminate the following input frequencies: Ω = 0.44π, and Ω = 0.7π. For this
part, derive the filter coefficients of both nulling filters.

(b) Generate an input signal x[n] that is the sum of three sinusoids:

x[n] = 5 cos (0.3πn) + 22 cos
(

0.44πn− π

3

)
+ 22 cos

(
0.7πn− π

4

)
Make the input signal 150 samples long over the range 0 ≤ n ≤ 149.

(c) Use conv to filter the sum of three sinusoids signal x[n] through the filters designed
in part (a). Include the MATLAB code that you wrote to implement the cascade of
two FIR filters in the appendix.

(d) Make a plot of the output signal and show the first 40 points. Determine (by hand)
the exact mathematical formula (magnitude, phase, and frequency) for the output
signal for n ≥ 5. (Hint: recall that an LTI system alters the magnitude and phase of
sinusoidal inputs.)

4.4 Simple Bandpass Filter Design

The L-point averaging filter is a lowpass filter. Its passband width is controlled by L, being
inversely proportional to L. It is also possible to create a filter whose passband is centered
around some frequency other than zero. One simple way to do this is to define the impulse
response of an L-point FIR as:

h[n] =
2

L
cos (Ωcn), 0 ≤ n < L

where L is the filter length and Ωc is the center frequency that defines the frequency location
of the passband. For example, we would pick Ωc = 0.44π if we want the peak of the filter’s
passband to be centered at 0.44π. The bandwidth of the bandpass filter (BPF) is controlled
by L; the larger the value of L, the narrower the bandwidth.

30

(a) Generate a bandpass filter that will pass a frequency component at Ω = 0.44π. Make
the filter length (L) equal to 10. Since we are going to be filtering the signal defined
below, measure the gain of the filter at the three frequencies of interest: Ω = 0.3π,
Ω = 0.44π and Ω = 0.7π.

x[n] = 5 cos (0.3πn) + 22 cos
(

0.44πn− π

3

)
+ 22 cos

(
0.7πn− π

4

)
(4)

(b) The passband of the BPF is defined by the region of the frequency response where
|H(ejΩ)| is close to its maximum value. If we define the maximum to be Hmax, then
the passband width is defined as the length of the frequency region where the ratio
|H(ejΩ)|/Hmax is greater than 1/

√
2 = 0.707. The stopband of the BPF filter is

defined by the region of the frequency response where |H(ejΩ)| is close to zero. In
this case, we will define the stopband as the region where |H(ejΩ)| is less than 25%
of the maximum.

Figure 1 shows how to define the passband and stopband. Note: you can use
MATLAB’s find function to locate those frequencies where the magnitude satisfies
|H(ejΩ)| ≥ 0.707Hmax.

Figure 1: Passband and Stopband for a typical FIR bandpass filter. In this case, the
maximum value is 1, the passband is the region where the frequency response is greater
than 1/

√
2 = 0.707 times the maximum value, and the stopband is defined as the region

where the frequency response is less than 25% of the maximum.

Make a plot of the frequency response for the L = 10 bandpass filter from part (a),
and determine the passband width (at the 0.707 level). Repeat the plot for L = 20
and L = 40 so you can explain how the width of the passband is related to filter
length L, i.e., what happens when L is doubled or halved.

(c) Comment on the selectivity of the L = 10 bandpass filter. In other words, which
frequencies are “passed by the filter”? Use the frequency response to explain how the
filter can pass one component at Ω = 0.44π, while reducing or rejecting the others at
Ω = 0.3π and Ω = 0.7π.

31

(d) Generate a bandpass filter that will pass the frequency component at Ω = 0.44π,
but now make the filter length (L) long enough so that it will also greatly reduce
frequency components at (or near) Ω = 0.3π and Ω = 0.7π. Determine the smallest
value of L so that

(a) Any frequency component satisfying |Ω| ≤ 0.3π will be reduced by a factor of
10 or more2.

(b) Any frequency component satisfying 0.7π ≤ |Ω| ≤ π will be reduced by a factor
of 10 or more.

This can be done by making the passband width very small.

(e) Use the filter from the previous part to filter the “sum of three sinusoids” signal in
(4). Make a plot of 100 points of the input and output signals, and explain how the
filter has reduced or removed two of the three sinusoidal components.

(f) Make a plot of the frequency response (magnitude only) for the filter from part (d),
and explain how H(ejΩ) can be used to determine the relative size of each sinusoidal
component in the output signal. In other words, connect a mathematical description
of the output signal to the values that can be obtained from the frequency response
plot.

4.5 Report Checklist

Be sure the following are included in your report.

1. Section 3.3: explanation of periodicity of frequency response

2. Section 4.1: derivation of (3)

3. Section 4.1: (labeled) plots of magnitude and phase of H(ejΩ)

4. Section 4.1: plots of H(ejΩ) using freqz (code in appendix)

5. Section 4.2: list of frequencies where HH is 0 (and compare to above)

6. Section 4.3: coefficients of two nulling filters

7. Section 4.3: MATLAB code for filtering signal (appendix)

8. Section 4.3: plot of nulled output and formula for output signal

9. Section 4.4: coefficients of bandpass filter; gain at three frequencies

2For example, the input amplitude of the 0.7π component is 22, so its output amplitude must be less
than 2.2

32

10. Section 4.4: plots of frequency response for L = 10, 20, and 40 with a description of
the passband widths

11. Section 4.4: comments on selectivity of the L = 10 BPF

12. Section 4.4: the smallest L that satisfies the criteria

13. Section 4.4: plot of input and output; explanation of effect on three sinusoid signal

14. Section 4.4: plot of frequency response; explanation of size of each sinusoidal compo-
nent in output

33

Fourier Series

EE 224: Signals and Systems I

1 Overview

In this lab you will experience the power of Fourier series analysis and synthesis.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Use MATLAB to approximate Fourier series coefficients of a sampled signal.

2. Use MATLAB to synthesize a signal from its Fourier series coefficients.

3. Describe the difference in sound made by two musical instruments in terms of their
Fourier series coefficients.

4. Create your own synthesized instrument using Fourier series (bonus).

3 Pre-Lab Reading

3.1 Fourier Analysis

Begin by reviewing the Fourier analysis formula. Given a periodic signal x(t) with period
T , x(t) can be represented by

x(t) =
∞∑

k=−∞

ake
jkω0t (1)

where ω0 = 2π
T

and

ak =
1

T

∫ T

0

x(t)e−jkω0tdt for all k (2)

Although an infinite number of harmonics may be required for a general signal, in most
situations, a finite number of them provides a practically good approximation.

If the signal x(t) is not given as a mathematical function but we have a sampled recorded
version of it, the integrals to compute the coefficients (ak) cannot be evaluated precisely.

34

Although there are more efficient methods to perform the Fourier analysis directly on the
sampled signals (e.g., the Fast Fourier Transform (FFT)), we will use a simple method to
approximately evaluate those integrals: the Riemann approximation. Assuming that the
signal x(t) is reasonably smooth (Riemann integrable) and that the sampling time Ts is an
integer fraction of the period T , i.e., T = NTS of samples in a period (this is not really
necessary but simplifies our code), then:

ak =
1

T

∫ T

0

x(t)e−jkω0tdt ' Ts
T

T/Ts∑
n=0

x[Tsn]e−jkω0Tsn. (3)

The approximation gets better and better as the number of samples goes to infinity (mean-
ing Ts goes to zero). In other words, fixing the sampling time limits the quality of the
approximation, especially for larger values of k. This is because Ts becomes too large with
respect to kω0, the frequency of the kth harmonic.

Find the Fourier series coefficients a0, a1, a2, and a3 for the square wave given below
(assume the signal repeats with period T = 0.04). Use the integral in (3) and include your
answer in your report.

x(t) =

{
1 0 ≤ t < 0.02

0 0.02 ≤ t < 0.04

3.2 Fourier Synthesis

The synthesis formula allows one to generate periodic signals from the linear combination of
harmonic complex exponentials. Here we assume that the number of non-zero coefficients
ak is finite. Then

x̃(t) =
∑
k

ake
jkω0t

In particular,

x̃[Tsn] =
∑
k

ake
jkω0Tsn

4 Lab Exercises

4.1 Fourier Series Analysis Function

Write a Matlab function “findFS” which takes as inputs xT , a vector of samples of x(t)
covering one period of x(t); k, the index of the desired coefficient; the period T ; and the
sampling time Ts; and produces as output the approximate ak coefficient according to (3).
Note that you can easily take advantage of vectorization by considering the product of the
row vector xT and the column vector e−jkω0Tsn. A template for the function is provided.

35

4.2 Fourier Series Coefficients of a Square Wave

Let’s construct a test signal. Define in Matlab
x T=[ones(1000,1);zeros(1000,1)];

This is one period of a square wave signal. Let the fundamental period be T = 0.04 sec.

a) Calculate the sampling time Ts and explain your answer. (Hint: Ts = T/2000)

b) Use the function you wrote in the previous exercise to compute a0, a1, a2, and a3.

c) Find a−1, a−2, and a−3. How do these relate to a1, a2, and a3?

d) Verify the coefficients you have computed approximate reasonably well the actual
coefficients you obtained for the prelab.

4.3 Fourier Series Synthesis

Write a Matlab function “synthFS” which has the following inputs: a column vector C =
[a0; a1; . . . ; am] of coefficients where m is the largest integer corresponding to a non-zero
coefficient, the sampling time Ts, and the fundamental period T . The output should be
x̃T (Tsn), the vector of N = T/Ts (N an integer) samples corresponding to one period of x̃.
Note that your program should verify that T/Ts is an integer. You will also need to extend
C to include the complex conjugate coefficients corresponding to the negative ks. Finally,
you may want to generate an array F whose columns are the vectors ejkω0Tsn. x̃T is then
computed as F*CC, where CC is a vector containing all the coefficients from −m to m. A
template for this function is provided.

4.4 Spectra of a Trumpet and Whistle

Load the data file trumpet whistle.mat, which can be found on Canvas. It contains
vectors trumpet and whistle. Both signals are sampled at f0 = 44100 Hz, and they
represent one period of synthetic trumpet and whistle tones generated by a toy electric
keyboard.

a) Compute the period of the two signals.

b) For each signal, compute and report the first 9 harmonic coefficients, i.e., aks with
k = −9, . . . , 9 using the function “findFS” you have developed.

c) For each signal, plot the magnitude and phase spectra of the frequency components
from part b. Briefly comment on their main differences. You may use the Matlab
function stem to plot the spectrum.

d) For each signal, synthesize an approximation by using the periods in part a, the
coefficients in part b, the sampling time Ts = 1/f0, and your function “synthFS.”

36

e) For each signal, plot on the same plot the given signal and its synthesized approxi-
mation. (You may use spectraplot.m found on Canvas. Make sure the axis labels
are accurate.) Comment on the quality of the approximation in both cases.

f) For each signal and its approximation, generate a new signal by repeating them for
1000 periods (e.g., using the built in function repmat). Use the function sound in
Matlab and the sampling frequency f0 to hear the sound you have generated. Can
you hear the difference between the originals and the approximations? Comment.
(Note you may need to scale the signals to have magnitude 1, see help sound.)

Note that the trumpet sound has a much richer spectrum and corresponds to a more com-
plex sound. While the whistle sound essentially does not have any harmonic components
above the ninth and does not have any even harmonic components, the trumpet sound has
important harmonics above the ninth; this can be argued from the error in the approxima-
tion.

4.5 Bonus

Synthesize your own “instrument” by repeating steps d-f of the last subsection. Instead
of using the ak that you calculated for the trumpet and whistle, come up with your own
coefficients any way you want. (You don’t have to limit yourself to nine coefficients.)
Upload your sound and describe it in your report.

4.6 Report Checklist

Be sure the following are included in your report.

1. Section 4.1: include your function in the appendix

2. Section 4.2: provide answers for a-d

3. Section 4.3: include your function in the appendix

4. Section 4.4: provide answers for a-c, e, and f

5. Section 4.5: (bonus) describe the sound you created and explain how you created it

37

Introduction to Digital Images

EE 224: Signals and Systems I

1 Overview

In this lab we introduce digital images as a new higher dimensional signal type. Digital
images are written as two-dimensional matrices of numbers that can be manipulated to
enhance contrast, invert images, and highlight objects.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Describe digital image types, including monochrome and color.

2. Display images in MATLAB.

3. Perform basic pixel manipulation including clearing, copying, inverting, and thresh-
olding.

4. Perform grsyscale brightening and contrast-stretching.

3 Pre-Lab Reading

3.1 Monochrome Images

An image can be represented as a function J(x, y) of two continuous variables representing
the horizontal (x) and vertical (y) coordinates of a point in space. The variables x and
y represent spatial dimensions. Thus, their units would be inches or some other unit of
length. Moving images (such as video) add a time variable to the two spatial variables.
Digital images sample the signal J(x, y) at uniform intervals:

J [m,n] = J(mT1, nT2) 1 ≤ m ≤M and 1 ≤ n ≤ N

where T1 and T2 are the sample spacings in the horizontal and vertical directions. In
MATLAB, we can represent an image as a matrix which consists of M rows and N columns.

38

The matrix entry at (m,n) is the sample value J [m,n]called a pixel (short for picture
element).

Monochrome images are displayed using black and white and shades of gray, so they are
called grayscale images. In this lab, we will consider only sampled grayscale still images. A
sampled grayscale still image would be represented as a two-dimensional array of numbers.
An important property of light images such as photographs and TV pictures is that their
values are always non-negative and finite in magnitude; i.e.,

0 ≤ J [m,n] ≤ Jmax <∞

This is because light images are formed by measuring the intensity of reflected or emitted
light which must always be a positive, finite quantity. When stored in a computer or
displayed on a monitor, the values of J [m,n] have to be scaled relative to a maximum
value Jmax . Usually, an eight-bit integer representation is used. With 8-bit integers,
the maximum value (in the computer) would be Jmax = 28 − 1 = 255, and there would be
28 = 256 different gray levels for the display, from 0 to 255. Images in this format have type
uint8 (unsigned 8-bit integer) in MATLAB. However, in image recognition applications,
binary images (Jmax = 1) are often used to separate parts of the image that are of interest
from areas that are not. A simple example is the application of zip code recognition on
letters. The algorithm would first search for the zip code, then filter out the rest of the
image.

3.2 Displaying and Exporting Images in MATLAB

Most of the lab exercises in this class will require you to produce one or more output
images. These will need to be incorporated into your report. Since many exercises will use
MATLAB, we will describe here some basic I/O and display commands in the MATLAB
environment.

• Reading Images: You can read an image file, img.tif or image.jpg, into the MATLAB
workspace using the command:

1 IMG=imread(p o u t . t i f);

This will produce an image matrix IMG of data type uint8.

• Displaying Images: You can display the image array IMG with the following com-
mands.

1 colormap(gray (256)); % only needed for grayscale image

2 imshow(IMG)

3 truesize;

If IMG is a grayscale image, the colormap function is needed to tell MATLAB which
color to display for each possible pixel value. The truesize command, which is
included in the image processing toolbox, maps each image pixel to a single display
pixel to avoid any interpolation on the display. This will be important in future labs.

39

• Writing Images: When producing a lab report document, you should strive to present
the best representation of your output images. Therefore, it is best to export your
images to a lossless file format, such as TIFF or BMP, which can then be imported
into your lab report document. You can write the image array X to a file using the
imwrite function:

1 imwrite(x, i m g _ o u t . t i f)

Note that if X is of type uint8, the imwrite function assumes a dynamic range of
[0, 255], and will clip any values outside that range. If X is of type double, then
imwrite assumes a dynamic range of [0, 1], and will linearly scale to the range [0, 255],
clipping values outside that range, before writing out the image to a file. To convert
the image to type uint8 before writing, you can use

1 imwrite(uint8(x), i m g _ o u t . t i f)

If your image is in color, such as RGB (Red-Green-Blue), then you will need to
convert it to grayscale using the rgb2gray command in MATLAB:

1 RGB = imread(‘peppers.png ’); imshow(RGB)

2 I = rgb2gray(RGB);

3 figure; imshow(I)

3.3 Prelab Questions

Open Matlab and run the following command:

1 moon = imread(‘moon.tif ’);

1. What is the size of the image example? NxM pixels

2. What is the variable type?

3. Write out one line of Matlab code for seeing the intensity value of any given pixel in
the image.

4 Image Manipulation

The goal of image manipulation is to improve the image in ways that increase the perfor-
mance of a system for human viewing or computer vision applications.

40

Figure 1: Image of a tire with a histogram of intensity values. Most of the pixels have low
intensities.

4.1 Histogram Computation

Image histograms are a simple but very useful method to analyze images and to enhance the
quality of the image (at least for a human observer) by performing point transformations.
In grayscale images, the histogram looks at the distribution of the intensity values of the
image. For each range of grayscale values, the number of pixels in that range are counted.
To see the distribution of intensities in the image, create a histogram by calling the imhist

function. Generally, a good contrast image will have values spread out across the range
of the intensity values from 0 to N . Figure 1 shows the MATLAB image tire.tif and its
histogram. Note that most of the pixels have low values that are in the range of 0-25 in
intensity.

4.2 Contrast Stretching and Intensity Level Slicing

Figure 2: Example contrast mapping s = T (r). The function T is applied to each pixel.

Low contrast images result from poor illumination or lack of response from the imaging
sensor. The idea behind contrast stretching is to increase the dynamic range of the gray

41

levels in the image being processed. This is implemented by a mapping function, s = T (r).
Figure 2 shows a typical transformation for contrast stretching. The locations of points
(r1, s1) and (r2, s2) control the shape of the contrast function. If r1 = r2 and s1 = s2,
then the transformation is a linear function. If r1 = r2, s1 = 0, and s2 = L− 1, then the
transformation is a thresholding function. Intermediate values produce different types of
spread. The mapping is a piecewise linear interpolation.

Figure 3: Example mapping functions for Intensity Level Slicing. The mapping on the
left zeros out all pixels that have intensities below A (r < A) and above B (r > B). The
mapping on the right brightens pixels with intensities between A and B (A ≤ r ≤ B).

A related transformation is Intensity Level Slicing which can highlight or delete a specific
range of gray levels. Applications include enhancing features such as water in satellite
images or the tire in the image above. There are two main approaches for this: display
a high value for all of the pixels in a desired range and zero out the others or brighten
the pixels in the range and leave the other pixels the same. Levels can be deleted using a
similar approach. Examples are shown in Figure 3.

4.3 Histogram Equalization

The histogram equalization operation tries to change the pixel distribution so that it is as
close as possible to a uniform distribution. This means that all gray levels from 0 to 2B−1
(where B is the number of bits) are approximately equally likely. The effect is to widen
the effective dynamic range of the image intensity. The results for this operation are shown
in Figure 4 for the tire.tif image. Compare this to the original image in Figure 1. Note
that the histogram extends across most gray values with approximately equal numbers of
occurrences. MATLAB code for this operation is (X is the original image):

1 Xeq = histeq(X);

2 figure; subplot (121); imshow(Xeq)

3 subplot (122); imhist(Xeq)

42

Figure 4: Tire image after histogram equalization with a histogram of its intensities.

5 Lab Exercises

1. Load the image “pout.tif” into MATLAB and compute its histogram. Include the
histogram and image in your lab report.

(a) What is the range of the pixel intensity values in the original image?

(b) Give two methods for increasing the range of the image intensity from Section 4
above. Describe and implement the methods and show the results of the oper-
ations in your lab report. Compare the results in both cases, does one method
work better than the other?

2. Load the built-in MATLAB image “coloredChips.png.” You will need to convert the
image to grayscale. Use the methods described in Section 4 to isolate the round chips
in the image by filtering the image intensity. The goal is to pre-process the image to
remove the background so that a machine vision system can easily count the chips
on the table. In your lab report, describe what steps you took to analyze the image
and subtract the background. Include your MATLAB script and the stages of your
processing pipeline. Display the image after each processing step.

5.1 Report Checklist

Be sure the following are included in your report.

1. Section 3.3: answer the three pre-lab questions

2. Section 5: answer the questions and complete the exercises in 1(a) and 1(b)

3. Section 5: complete and describe your approach to isolating the chips in 2

43

References

[1] R.C. Gonzalez and R.E. Woods Digital Image Processing, Addison Wesley, 1993

[2] “MATLAB Image Processing Toolbox Documentation”,’ The Mathworks,
https://www.mathworks.com/help/images/index.html?s_tid=CRUX_lftnav

[3] Jackson,Jeff Notes from ECE 482, University of Alabama,
http://jjackson.eng.ua.edu/courses/ece482/lectures/LECT01-2.pdf

http://jjackson.eng.ua.edu/courses/ece482/lectures/LECT05-2.pdf

44

https://www.mathworks.com/help/images/index.html?s_tid=CRUX_lftnav
http://jjackson.eng.ua.edu/courses/ece482/lectures/LECT01-2.pdf
http://jjackson.eng.ua.edu/courses/ece482/lectures/LECT05-2.pdf

Filtering Digital Images

EE 224: Signals and Systems I

1 Overview

In this lab, we introduce linear sliding window filtering of images. The filters work in two
dimensions to enhance the image in ways such as averaging out noise or emphasizing edges.

2 Learning Objectives

By the end of this lab, students will be able to:

1. Describe spatial frequency in 2D digital images.

2. Design and implement linear, spatially invariant (LSI) filters using two-dimenional
convolutional windows.

3. Use the properties of LSI filters to implement the Canny Edge Detection Protocol for
images.

3 Pre-Lab Reading and Exercises

3.1 Image Filtering and Spatial Frequency

Image analysis deals with techniques for extracting information from images. The first step
is generally to segment an image. Segmentation divides an image into its constituent parts
or objects. For example, in a military air-to-ground target acquisition application one may
want to identify tanks on a road. The first step is to segment the road from the rest of the
image and then to segment objects on the road for possible identification. Segmentation
algorithms are usually based on one of two properties of gray-level values: discontinuity
and similarity. For discontinuity, the approach is to partition an image based on abrupt
changes in gray level. Objects of interest are isolated points, lines, and edges.

An edge is the boundary between two regions with relatively distinct gray-level proper-
ties. The idea underlying most edge-detection techniques is the computation of a relative
derivative operator. Figure 1 illustrates this concept. The picture on the left shows an

45

Figure 1: Synthetic images with horizontal pixel intensity, first derivative of intensity, and
second derivative of intensity.

image of a light stripe on a dark background, the gray-level profile of a horizontal scan
line, and the first and second derivatives of the profile. The first derivative is positive when
the image changes from dark to light and zero where the image is constant. The second
derivative is positive for the part of the transition associated with the dark side of the
edge and negative for the transition associated with the light side of the edge. Thus, the
magnitude of the first derivative can be used to detect the presence of an edge in the image
and the sign of the second derivative can be used to detect whether a pixel lies on the light
or dark side of the edge.

3.2 Sliding Window Filters

One way of filtering is to first filter the rows with a one-dimensional filter and then filter
the columns with a one-dimensional filter. Alternatively, two dimensional filters can be
applied to the neighborhood of each pixel to filter a signal. Filtering can help remove noise
from an image by averaging out the effects of random noise fluctuations. High pass filters
help detect edges and sudden spatial changes in an image.

The operations take place in the spatial domain and operate directly on pixel values.
The general form for operations is: y(i, j) = T [x(i, j)] where x(i, j) is the input image,
y(i, j) is the filtered output image, T is an operator on x defined over a neighborhood
of point (i, j). The operator, T , defines the size of the neighborhood around each pixel.
The neighborhood is usually rectangular, centered on (i, j) and is much smaller than the
image. This neighborhood is moved around to each pixel, hence the name sliding window
or spatial mask. Use of spatial masks for filtering is called spatial filtering and the masks
can be linear or nonlinear. As a note, the linear filter is equivalent to a two-dimensional
convolution of the image with the filter.

46

Figure 2: Spatial filtering with a sliding window; (left) three by three neighborhood of pixel
(i, j); (right) three by three spatial mask.

A three by three linear filter can be written in matrix form as:
w1,1 w1,0 w1,−1

w0,1 w0,0 w0,−1

w−1,1 w−1,0 w−1,−1

The output of applying a three by three mask to image x is given by the two-dimensional
convolution:

y(i, j) =
1∑

k=−1

1∑
l=−1

wk,lx(i− k, j − l)

= w1,1x(i− 1, j − 1) + w1,0x(i− 1, j) + w1,−1x(i− 1, j + 1)

+ w0,1x(i, j − 1) + w0,0x(i, j) + w0,−1x(i, j + 1)

+ w−1,1x(i+ 1, j − 1) + w−1,0x(i+ 1, j) + w−1,−1x(i+ 1, j + 1)

This masking process continues until all pixels in the image are covered. The standard
practice is to create a new image with the new values. For pixels near the boundary of the
image, the output may be computed using partial neighborhoods or by padding the input
appropriately by adding in repeated edge rows/columns or by a frame of black or white
pixels.

These types of spatial filters are linear and spatially invariant (LSI). They can also
be interpreted in the frequency domain. Lowpass filters attenuate (or eliminate) high fre-
quency components characterized by edges and sharp details in an image with the net effect

47

of blurring the image. Highpass filters attenuate (or eliminate) low frequency components
such as slowly varying characteristics. The overall effect is a sharpening of edges. Bandpass
filters attenuate (or eliminate) a given frequency range of frequencies. This is primarily
used for image restoration.

3.3 Technical Notes for Implementing Filter Masks

In this lab, the MATLAB routine imfilter will be used: Y = imfilter(X,h); where X
is the image to be filtered, h is the filter in matrix form, and Y is the filtered image. A
simple example for a three by three averaging filter is given below:

1 >>X=imread(m o o n . t i f);

2 >>h = ones (3)/9;% or [1,1,1;1 1 1;1 1 1]/9;

3 >>Y = imfilter(X,h);

There are two things to keep in mind with imfilter. First, it returns an image in
the same format as the input. This means that if, for a uint8 image, the function gets a
non-integer value, it rounds it to the closest integer. Second, it clips pixel values outside of
the range [0, 255] to 0 or 255. These are non-linear operations which effect whether the LSI
operations can be done in any order. For pixels near the boundary of the image, the output
may be computed using partial neighborhoods or by padding the input appropriately by
adding in repeated edge rows/columns or by a frame of black or white pixels. The default
in imfilter is to assume a black border. Details can be found by reading about padding
options on the help page.

3.4 Pre-Lab Questions

1. Which part of the image in Figure 3 has the lowest spatial frequency: specify top,
bottom, left, right, middle, or a corner.

48

Figure 3: Image for question 1.

2. Compute the spatial period of the image below in terms of pixels/cycle. Give a
numerical answer.

Figure 4: Image for question 2.

3. Given the 2D filter mask below and the intensity values from an image, compute the
output for pixel at location (3, 3) in the image.

-1 0 1

-2 0 2

-1 0 1

49

Pixel # 1 2 3 4 5 6

1 5 25 25 30 20 10

2 20 20 30 60 25 30

3 35 30 40 70 40 40

4 80 80 70 70 60 50

4 Lab Exercises

This part of the lab will be done using the three images that were provided with the lab.
They are called I, Ig, and Isp. For each piece of the lab, you will need to display the entire
image before and after filtering. The command for this is:

1 >> imshowpair(I,filtI ,‘montage ’)

You will also need to display a close up of parts of the image that illustrate the filter effect
well. To do this, it helps to display the image with the pixels numbered to help select
the proper subimage. If the routine imshow does not do this automatically, then use the
following code to display image I, for example:

1 >> RI = imref2d(size(I)); figure; imshow(I,RI);

Load the Matlab file matlab.mat with the images.

4.1 Low-Pass Spatial Filtering with a Moving Average Filter

A simple three by three or N = 3 averaging filter has the form:

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Write out the 2D filter for the N = 5 case. For averaging filters, the sum of the weights
over the filter should be equal to 1. Use filters with dimensions N = 5, 9, and 13 to filter
the image I. What is the effect of increasing the filter size in parts of the image with small
details? Include your output images in your report.

50

4.2 High-Pass Spatial Filtering

The image filters shown below respond more strongly to lines of different directions in an
image. The first mask responds very strongly to horizontal lines with a thickness of one
pixel. The maximum response occurs when a line passed through the middle row of the
mask. The direction of a mask can be established by noting that the preferred direction is
weighted with a larger coefficient than the other possible directions.

(a) (b) (c) (d)

-1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1

2 2 2 -1 2 -1 -1 2 -1 -1 2 -1

-1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2

Use the image I. Filter the image using the four filters above. Describe your results for
each case. Which edges were highlighted in each case? The MATLAB commands for the
first case are given below.

1 >> wa=[-1,-1,-1;2,2,2;-1,-1,-1];

2 >> I_a=imfilter(I,wa);

Display your results by plotting the four output images together. Comment on your results
and what edges were accented in each case.

4.3 Filtering Noise

Noise often has high spatial frequency so that it looks like salt and pepper in the picture.
Most objects in the image have lower spatial frequencies so we can often improve the image
by low pass filtering with an averaging filter. This technique works well if the noise does
not vary that much from the image. Speckle or impulsive noise is very extreme noise that
looks like white or black spots on an image. This section looks at how averaging filters
affect the image.

1. Display the images Ig and Isp in grayscale. These images have been corrupted by
two different types of noise. You will use an averaging filter to remove the noise in
this image. Filter each image with a 3x3 averaging filter and a 7x7 averaging filter.
Display the results in image pairs. Discuss the results. Assess the trade-off between
noise reduction and image resolution (how clear objects are in the image).

Compare the results for filtering different types of noise. Does the filtering work
better for one type of noise? If so, why?

51

2. Using the images Ig and Isp, filter each image with the high pass filters (a) and (c)
from Section 4.2. Display the results in image pairs. Discuss the results focusing on
how clear the edges in each direction appear.

Compare the results for filtering different types of noise. Does the filtering work
better for one type of noise? If so, why?

4.4 Filtering Edges in Noise

Edge detection is a key processing step for finding objects with computer vision systems.
Unfortunately, noise can disrupt finding edges, so a commonly used strategy is to first blur
the image to remove noise, then to use a high pass filter to find edges. Most practical
edge detection operators use multi-stage algorithms to detect a wide range of edges in
images. One example is Canny Edge Detection, developed by John F. Canny in 1986. The
Canny Edge Detector first smooths the image to blur the noise to prevent false detections.
Then, it uses a set of high pass filters to detect edges and estimate their direction. Further
processing filters and thins the edges. In this lab, we implement the first two steps.

1. Smoothing: Apply a low pass filter to smooth the image to remove noise to prevent
false detections caused by noise. The typical filter used by this function is a Gaussian
filter kernel which smooths the edges of the filter. Use the filter parameters below to
filter image Ig:

1 >> hgauss = [2 4 5 4 2; 4 9 12 9 4; 5 12 15 12 5; ...

2 4 9 12 9 4; 2 4 5 4 2]/159;

Display the result and comment on what you see in the image.

2. Edge Detection and Intensity Gradient: An edge in an image may point in a
variety of directions, so the Canny algorithm uses filters to detect horizontal, vertical,
and diagonal edges in the smoothed image. Use the Sobel Edge Detector filters given
below on the result from the previous step with each filter separately to get images
filtered in the x and y directions, Gx and Gy.

(a) (b)

-1 -2 -1 -1 0 1

0 0 0 -2 0 2

1 2 1 -1 0 1

52

Finally, combine the two filtered images to compute the intensity gradient and local
direction at each pixel in the image:

G =
√
G2

x +G2
y

θ = atan2 (Gy, Gx)

Display the intensity gradient image, G, using the command imshow(G,[0,255])

and comment on your results from Section 4.3 Part 2 above. Are the edges clearer in
one case or the other?

4.5 Thought Question

What will happen if the order of processing for an LSI low pass filter followed by an LSI
high-pass filter is reversed for edge detection? Explain if order matters or not.

5 Report Checklist

Be sure the following are included in your report.

1. Section 3: answer the three pre-lab questions

2. Section 4.1: write out 5x5 filter

3. Section 4.1: report on filter effects for N = 5, 9, and 13; include images

4. Section 4.2: describe results of applying the four filters, answer related questions;
include images

5. Section 4.3, Part 1: answer questions about noise reduction vs. resolution; include
images

6. Section 4.3, Part 2: answer questions about edge enhancement; include images

7. Section 4.4, Part 1: display filtered image and comment

8. Section 4.4, Part 2: display gradient and direction images; compare to Section 4.3,
Part 2

9. Section 4.5: answer the thought question

53

References

[1] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison Wesley, 1993

[2] “MATLAB Image Processing Toolbox Documentation”, The Mathworks,
https://www.mathworks.com/help/images/index.html?s_tid=CRUX_lftnav

[3] “Canny Edge Etector”, Wikipedia,
https://en.wikipedia.org/wiki/Canny_edge_detector

[4] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986

[5] Bill Green, “Canny Edge Detection Tutorial”,
https://web.archive.org/web/20160324173252/http:/dasl.mem.drexel.edu/

alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html

[6] Prem K. Kalra, “Canny Edge Detection”,
https://web.archive.org/web/20150421090938/http:/www.cse.iitd.ernet.in/

~pkalra/csl783/canny.pdf

[7] NASA Image and Video Library https://images.nasa.gov/

54

https://www.mathworks.com/help/images/index.html?s_tid=CRUX_lftnav
https://en.wikipedia.org/wiki/Canny_edge_detector
https://web.archive.org/web/20160324173252/http:/dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html
https://web.archive.org/web/20160324173252/http:/dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html
https://web.archive.org/web/20150421090938/http:/www.cse.iitd.ernet.in/~pkalra/csl783/canny.pdf
https://web.archive.org/web/20150421090938/http:/www.cse.iitd.ernet.in/~pkalra/csl783/canny.pdf
https://images.nasa.gov/

	OpenSignals-cover
	Signals_Systems_Authors_and_Copyright_info (2)
	Signals_Systems_Acknowl
	Signals_Systems_Intro
	matlab-basics-pdf (3)
	Overview
	Learning Objectives
	Pre-Lab Reading
	Lab Exercises
	Getting Started
	Solving Systems of Linear Equations
	Complex Numbers in MATLAB
	Vectorization

	Working with Signals in MATLAB
	Plotting Signals
	Sounds
	Images

	Report Checklist

	tuning-forks-pdf (1)
	Overview
	Learning Objectives
	Pre-Lab Reading
	Lab Exercises
	Overview
	MATLAB Preliminaries
	Introduction to Using Functions in MATLAB
	Writing an FFTPlot Function
	Labeling Plots in MATLAB

	Signal Collection
	Report Checklist

	impulse-response-and-auralization-pdf
	Overview
	Learning Objectives
	Pre-Lab Reading
	Auralization and Background
	Signal Acquisition
	Chirp Signals
	Spectrograms

	Lab Exercises
	Using a Computed Impulse Response and Convolution
	Investigating Frequency Modulated (FM) Signals
	Report Checklist

	frequency-response-notch-and-bandpass-filters-pdf
	Overview
	Learning Objectives
	Pre-Lab Reading
	Frequency Response of FIR Filters
	MATLAB Function for Frequency Response
	Periodicity of the Frequency Response

	Lab Exercises
	Frequency Response of the Four-Point Averager
	The MATLAB find Function
	Nulling Filters for Rejection
	Simple Bandpass Filter Design
	Report Checklist

	fourier-series-pdf
	Overview
	Learning Objectives
	Pre-Lab Reading
	Fourier Analysis
	Fourier Synthesis

	Lab Exercises
	Fourier Series Analysis Function
	Fourier Series Coefficients of a Square Wave
	Fourier Series Synthesis
	Spectra of a Trumpet and Whistle
	Bonus
	Report Checklist

	introduction-to-digital-images-pdf
	Overview
	Learning Objectives
	Pre-Lab Reading
	Monochrome Images
	Displaying and Exporting Images in MATLAB
	Prelab Questions

	Image Manipulation
	Histogram Computation
	Contrast Stretching and Intensity Level Slicing
	Histogram Equalization

	Lab Exercises
	Report Checklist

	filtering-digital-images-pdf
	Overview
	Learning Objectives
	Pre-Lab Reading and Exercises
	Image Filtering and Spatial Frequency
	Sliding Window Filters
	Technical Notes for Implementing Filter Masks
	Pre-Lab Questions

	Lab Exercises
	Low-Pass Spatial Filtering with a Moving Average Filter
	High-Pass Spatial Filtering
	Filtering Noise
	Filtering Edges in Noise
	Thought Question

	Report Checklist

