
Readings
in
Database
Systems
Fifth Edition

edited by
Peter Bailis

Joseph M. Hellerstein
Michael Stonebraker

Readings in Database Systems
Fifth Edition (2015)
edited by Peter Bailis, Joseph M. Hellerstein, and Michael Stonebraker

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

http://www.redbook.io/

Contents
Preface 3

Background Introduced by Michael Stonebraker 4

Traditional RDBMS Systems Introduced by Michael Stonebraker 6

Techniques Everyone Should Know Introduced by Peter Bailis 8

New DBMS Architectures Introduced by Michael Stonebraker 12

Large-Scale Dataflow Engines Introduced by Peter Bailis 14

Weak Isolation and Distribution Introduced by Peter Bailis 18

Query Optimization Introduced by Joe Hellerstein 22

Interactive Analytics Introduced by Joe Hellerstein 25

Languages Introduced by Joe Hellerstein 29

Web Data Introduced by Peter Bailis 33

A Biased Take on a Moving Target: Complex Analytics by Michael Stonebraker 35

A Biased Take on a Moving Target: Data Integration by Michael Stonebraker 40

List of All Readings 44

References 46

2

Readings in Database Systems, 5th Edition (2015)

Preface
In the ten years since the previous edition of Read-

ings in Database Systems, the field of data management
has exploded. Database and data-intensive systems to-
day operate over unprecedented volumes of data, fueled
in large part by the rise of “Big Data” and massive de-
creases in the cost of storage and computation. Cloud
computing and microarchitectural trends have made dis-
tribution and parallelism nearly ubiquitous concerns.
Data is collected from an increasing variety of hetero-
geneous formats and sources in increasing volume, and
utilized for an ever increasing range of tasks. As a re-
sult, commodity database systems have evolved consid-
erably along several dimensions, from the use of new
storage media and processor designs, up through query
processing architectures, programming interfaces, and
emerging application requirements in both transaction
processing and analytics. It is an exciting time, with
considerable churn in the marketplace and many new
ideas from research.

In this time of rapid change, our update to the tradi-
tional “Red Book” is intended to provide both a ground-
ing in the core concepts of the field as well as a commen-
tary on selected trends. Some new technologies bear
striking resemblance to predecessors of decades past,
and we think it’s useful for our readers to be familiar
with the primary sources. At the same time, technology
trends are necessitating a re-evaluation of almost all di-
mensions of database systems, and many classic designs
are in need of revision. Our goal in this collection is
to surface important long-term lessons and foundational
designs, and highlight the new ideas we believe are most
novel and relevant.

Accordingly, we have chosen a mix of classic, tradi-
tional papers from the early database literature as well as
papers that have been most influential in recent develop-
ments, including transaction processing, query process-
ing, advanced analytics, Web data, and language design.
Along with each chapter, we have included a short com-
mentary introducing the papers and describing why we
selected each. Each commentary is authored by one of
the editors, but all editors provided input; we hope the
commentaries do not lack for opinion.

When selecting readings, we sought topics and pa-
pers that met a core set of criteria. First, each selec-
tion represents a major trend in data management, as
evidenced by both research interest and market demand.
Second, each selection is canonical or near-canonical;
we sought the most representative paper for each topic.

Third, each selection is a primary source. There are
good surveys on many of the topics in this collection,
which we reference in commentaries. However, read-
ing primary sources provides historical context, gives
the reader exposure to the thinking that shaped influen-
tial solutions, and helps ensure that our readers are well-
grounded in the field. Finally, this collection represents
our current tastes about what is “most important”; we
expect our readers to view this collection with a critical
eye.

One major departure from previous editions of the
Red Book is the way we have treated the final two sec-
tions on Analytics and Data Integration. It’s clear in
both research and the marketplace that these are two of
the biggest problems in data management today. They
are also quickly-evolving topics in both research and in
practice. Given this state of flux, we found that we had
a hard time agreeing on “canonical” readings for these
topics. Under the circumstances, we decided to omit of-
ficial readings but instead offer commentary. This obvi-
ously results in a highly biased view of what’s happen-
ing in the field. So we do not recommend these sections
as the kind of “required reading” that the Red Book has
traditionally tried to offer. Instead, we are treating these
as optional end-matter: “Biased Views on Moving Tar-
gets”. Readers are cautioned to take these two sections
with a grain of salt (even larger that the one used for the
rest of the book.)

We are releasing this edition of the Red Book free
of charge, with a permissive license on our text that al-
lows unlimited non-commercial re-distribution, in mul-
tiple formats. Rather than secure rights to the rec-
ommended papers, we have simply provided links to
Google Scholar searches that should help the reader lo-
cate the relevant papers. We expect this electronic for-
mat to allow more frequent editions of the “book.” We
plan to evolve the collection as appropriate.

A final note: this collection has been alive since
1988, and we expect it to have a long future life. Ac-
cordingly, we have added a modicum of “young blood”
to the gray beard editors. As appropriate, the editors of
this collection may further evolve over time.

Peter Bailis
Joseph M. Hellerstein
Michael Stonebraker

3

Readings in Database Systems, 5th Edition (2015)

Chapter 1: Background
Introduced by Michael Stonebraker

Selected Readings:

Joseph M. Hellerstein and Michael Stonebraker. What Goes Around Comes Around. Readings in Database
Systems, 4th Edition (2005).

Joseph M. Hellerstein, Michael Stonebraker, James Hamilton. Architecture of a Database System. Foundations
and Trends in Databases, 1, 2 (2007).

I am amazed that these two papers were written a
mere decade ago! My amazement about the anatomy
paper is that the details have changed a lot just a few
years later. My amazement about the data model paper
is that nobody ever seems to learn anything from history.
Lets talk about the data model paper first.

A decade ago, the buzz was all XML. Vendors were
intent on adding XML to their relational engines. In-
dustry analysts (and more than a few researchers) were
touting XML as “the next big thing”. A decade later it
is a niche product, and the field has moved on. In my
opinion, (as predicted in the paper) it succumbed to a
combination of:

• excessive complexity (which nobody could un-
derstand)

• complex extensions of relational engines, which
did not seem to perform all that well and

• no compelling use case where it was wildly ac-
cepted

It is a bit ironic that a prediction was made in the
paper that X would win the Turing Award by success-
fully simplifying XML. That prediction turned out to be
totally wrong! The net-net was that relational won and
XML lost.

Of course, that has not stopped “newbies” from rein-
venting the wheel. Now it is JSON, which can be viewed
in one of three ways:

• A general purpose hierarchical data format. Any-
body who thinks this is a good idea should read
the section of the data model paper on IMS.

• A representation for sparse data. Consider at-
tributes about an employee, and suppose we wish
to record hobbies data. For each hobby, the data

we record will be different and hobbies are funda-
mentally sparse. This is straightforward to model
in a relational DBMS but it leads to very wide,
very sparse tables. This is disasterous for disk-
based row stores but works fine in column stores.
In the former case, JSON is a reasonable encod-
ing format for the “hobbies” column, and several
RDBMSs have recently added support for a JSON
data type.

• As a mechanism for “schema on read”. In effect,
the schema is very wide and very sparse, and es-
sentially all users will want some projection of
this schema. When reading from a wide, sparse
schema, a user can say what he wants to see at
run time. Conceptually, this is nothing but a pro-
jection operation. Hence, ’schema on read” is just
a relational operation on JSON-encoded data.

In summary, JSON is a reasonable choice for sparse
data. In this context, I expect it to have a fair amount of
“legs”. On the other hand, it is a disaster in the mak-
ing as a general hierarchical data format. I fully ex-
pect RDBMSs to subsume JSON as merely a data type
(among many) in their systems. In other words, it is a
reasonable way to encode spare relational data.

No doubt the next version of the Red Book will
trash some new hierarchical format invented by people
who stand on the toes of their predecessors, not on their
shoulders.

The other data model generating a lot of buzz in the
last decade is Map-Reduce, which was purpose-built by
Google to support their web crawl data base. A few
years later, Google stopped using Map-Reduce for that
application, moving instead to Big Table. Now, the rest
of the world is seeing what Google figured out earlier;
Map-Reduce is not an architecture with any broad scale
applicability. Instead the Map-Reduce market has mor-

4

Readings in Database Systems, 5th Edition (2015)

phed into an HDFS market, and seems poised to become
a relational SQL market. For example, Cloudera has re-
cently introduced Impala, which is a SQL engine, built
on top of HDFS, not using Map-Reduce.

More recently, there has been another thrust in
HDFS land which merit discussion, namely “data
lakes”. A reasonable use of an HDFS cluster (which by
now most enterprises have invested in and want to find
something useful for them to do) is as a queue of data
files which have been ingested. Over time, the enterprise
will figure out which ones are worth spending the effort
to clean up (data curation; covered in Chapter 12 of this
book). Hence, the data lake is just a “junk drawer” for
files in the meantime. Also, we will have more to say
about HDFS, Spark and Hadoop in Chapter 5.

In summary, in the last decade nobody seems to have
heeded the lessons in “comes around”. New data models
have been invented, only to morph into SQL on tables.
Hierarchical structures have been reinvented with failure
as the predicted result. I would not be surprised to see
the next decade to be more of the same. People seemed
doomed to reinvent the wheel!

With regard to the Anatomy paper; a mere decade
later, we can note substantial changes in how DBMSs
are constructed. Hence, the details have changed a lot,
but the overall architecture described in the paper is still
pretty much true. The paper describes how most of the
legacy DBMSs (e.g. Oracle, DB2) work, and a decade
ago, this was the prevalent implementation. Now, these
systems are historical artifacts; not very good at any-
thing. For example, in the data warehouse market col-
umn stores have replaced the row stores described in this
paper, because they are 1–2 orders of magnitude faster.
In the OLTP world, main-memory SQL engines with
very lightweight transaction management are fast be-
coming the norm. These new developments are chron-
icled in Chapter 4 of this book. It is now hard to find
an application area where legacy row stores are compet-

itive. As such, they deserve to be sent to the “home for
retired software”.

It is hard to imagine that “one size fits all” will
ever be the dominant architecture again. Hence, the
“elephants” have a bad “innovators dilemma” problem.
In the classic book by Clayton Christiansen, he argues
that it is difficult for the vendors of legacy technology
to morph to new constructs without losing their cus-
tomer base. However, it is already obvious how the ele-
phants are going to try. For example, SQLServer 14 is
at least two engines (Hekaton a main memory OLTP
system and conventional SQLServer — a legacy row
store) united underneath a common parser. Hence, the
Microsoft strategy is clearly to add new engines under
their legacy parser, and then support moving data from
a tired engine to more modern ones, without disturbing
applications. It remains to be seen how successful this
will be.

However, the basic architecture of these new sys-
tems continues to follow the parsing/optimizer/executor
structure described in the paper. Also, the threading
model and process structure is as relevant today as a
decade ago. As such, the reader should note that the
details of concurrency control, crash recovery, optimiza-
tion, data structures and indexing are in a state of rapid
change, but the basic architecture of DBMSs remains
intact.

In addition, it will take a long time for these legacy
systems to die. In fact, there is still an enormous amount
of IMS data in production use. As such, any student of
the field is well advised to understand the architecture
of the (dominant for a while) systems.

Furthermore, it is possible that aspects of this paper
may become more relevant in the future as computing
architectures evolve. For example, the impending ar-
rival of NVRAM may provide an opportunity for new
architectural concepts, or a reemergence of old ones.

5

Readings in Database Systems, 5th Edition (2015)

Chapter 2: Traditional RDBMS Systems
Introduced by Michael Stonebraker

Selected Readings:

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran, Jim Gray, Patricia P. Griffiths,
W. Frank King III, Raymond A. Lorie, Paul R. McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger,
Bradford W. Wade, Vera Watson. System R: Relational Approach to Database Management. ACM Transactions
on Database Systems, 1(2), 1976, 97-137.

Michael Stonebraker and Lawrence A. Rowe. The design of POSTGRES. SIGMOD, 1986.

David J. DeWitt, Shahram Ghandeharizadeh, Donovan Schneider, Allan Bricker, Hui-I Hsiao, Rick Rasmussen.
The Gamma Database Machine Project. IEEE Transactions on Knowledge and Data Engineering, 2(1), 1990,
44-62.

In this section are papers on (arguably) the three
most important real DBMS systems. We will discuss
them chronologically in this introduction.

The System R project started under the direction of
Frank King at IBM Research probably around 1972.
By then Ted Codd’s pioneering paper was 18 months
old, and it was obvious to a lot of people that one
should build a prototype to test out his ideas. Unfor-
tunately, Ted was not a permitted to lead this effort,
and he went off to consider natural language interfaces
to DBMSs. System R quickly decided to implement
SQL, which morphed from a clean block structured lan-
guage in 1972 [34] to a much more complex structure
described in the paper here [33]. See [46] for a com-
mentary on the design of the SQL language, written a
decade later.

System R was structured into two groups, the “lower
half” and the “upper half”. They were not totally syn-
chronized, as the lower half implemented links, which
were not supported by the upper half. In defense of the
decision by the lower half team, it was clear they were
competing against IMS, which had this sort of construct,
so it was natural to include it. The upper half simply
didn’t get the optimizer to work for this construct.

The transaction manager is probably the biggest
legacy of the project, and it is clearly the work of the
late Jim Gray. Much of his design endures to this day
in commercial systems. Second place goes to the Sys-
tem R optimizer. The dynamic programming cost-based
approach is still the gold standard for optimizer technol-
ogy.

My biggest complaint about System R is that the

team never stopped to clean up SQL. Hence, when the
“upper half” was simply glued onto VSAM to form
DB2, the language level was left intact. All the annoying
features of the language have endured to this day. SQL
will be the COBOL of 2020, a language we are stuck
with that everybody will complain about.

My second biggest complaint is that System R
used a subroutine call interface (now ODBC) to cou-
ple a client application to the DBMS. I consider ODBC
among the worst interfaces on the planet. To issue a
single query, one has to open a data base, open a cur-
sor, bind it to a query and then issue individual fetches
for data records. It takes a page of fairly inscrutable
code just to run one query. Both Ingres [150] and
Chris Date [45] had much cleaner language embed-
dings. Moreover, Pascal-R [140] and Rigel [135] were
also elegant ways to include DBMS functionality in a
programming language. Only recently with the advent
of Linq [115] and Ruby on Rails [80] are we seeing a
resurgence of cleaner language-specific enbeddings.

After System R, Jim Gray went off to Tandem to
work on Non-stop SQL and Kapali Eswaren did a re-
lational startup. Most of the remainder of the team re-
mained at IBM and moved on to work on various other
projects, include R*.

The second paper concerns Postgres. This project
started in 1984 when it was obvious that continuing to
prototype using the academic Ingres code base made no
sense. A recounting of the history of Postgres appears
in [147], and the reader is directed there for a full blow-
by-blow recap of the ups and downs in the development
process.

6

Readings in Database Systems, 5th Edition (2015)

However, in my opinion the important legacy
of Postgres is its abstract data type (ADT) system.
User-defined types and functions have been added to
most mainstream relational DBMSs, using the Postgres
model. Hence, that design feature endures to this day.
The project also experimented with time-travel, but it
did not work very well. I think no-overwrite storage
will have its day in the sun as faster storage technology
alters the economics of data management.

It should also be noted that much of the importance
of Postgres should be accredited to the availability of a
robust and performant open-source code line. This is an
example of the open-source community model of devel-
opment and maintenance at its best. A pickup team of
volunteers took the Berkeley code line in the mid 1990’s
and has been shepherding its development ever since.
Both Postgres and 4BSD Unix [112] were instrumental
in making open source code the preferred mechanism
for code development.

The Postgres project continued at Berkeley un-
til 1992, when the commercial company Illustra was
formed to support a commercial code line. See [147]

for a description of the ups and downs experienced by
Illustra in the marketplace.

Besides the ADT system and open source distribu-
tion model, a key legacy of the Postgres project was a
generation of highly trained DBMS implementers, who
have gone on to be instrumental in building several other
commercial systems

The third system in this section is Gamma, built
at Wisconsin between 1984 and 1990. In my opin-
ion, Gamma popularized the shared-nothing partitioned
table approach to multi-node data management. Al-
though Teradata had the same ideas in parallel, it was
Gamma that popularized the concepts. In addition, prior
to Gamma, nobody talked about hash-joins so Gamma
should be credited (along with Kitsuregawa Masaru)
with coming up with this class of algorithms.

Essentially all data warehouse systems use a
Gamma-style architecture. Any thought of using a
shared disk or shared memory system have all but dis-
appeared. Unless network latency and bandwidth get to
be comparable to disk bandwidth, I expect the current
shared-nothing architecture to continue.

7

Readings in Database Systems, 5th Edition (2015)

Chapter 3: Techniques Everyone Should Know
Introduced by Peter Bailis

Selected Readings:

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, Thomas G. Price. Access
path selection in a relational database management system. SIGMOD, 1979.

C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, Peter M. Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM
Transactions on Database Systems, 17(1), 1992, 94-162.

Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, Irving L. Traiger. Granularity of Locks and Degrees of
Consistency in a Shared Data Base. , IBM, September, 1975.

Rakesh Agrawal, Michael J. Carey, Miron Livny. Concurrency Control Performance Modeling: Alternatives and
Implications. ACM Transactions on Database Systems, 12(4), 1987, 609-654.

C. Mohan, Bruce G. Lindsay, Ron Obermarck. Transaction Management in the R* Distributed Database Man-
agement System. ACM Transactions on Database Systems, 11(4), 1986, 378-396.

In this chapter, we present primary and near-primary
sources for several of the most important core concepts
in database system design: query planning, concurrency
control, database recovery, and distribution. The ideas
in this chapter are so fundamental to modern database
systems that nearly every mature database system im-
plementation contains them. Three of the papers in this
chapter are far and away the canonical references on
their respective topics. Moreover, in contrast with the
prior chapter, this chapter focuses on broadly applicable
techniques and algorithms rather than whole systems.

Query Optimization
Query optimization is important in relational

database architecture because it is core to enabling data-
independent query processing. Selinger et al.’s founda-
tional paper on System R enables practical query opti-
mization by decomposing the problem into three distinct
subproblems: cost estimation, relational equivalences
that define a search space, and cost-based search.

The optimizer provides an estimate for the cost of
executing each component of the query, measured in
terms of I/O and CPU costs. To do so, the optimizer
relies on both pre-computed statistics about the contents
of each relation (stored in the system catalog) as well as
a set of heuristics for determining the cardinality (size)
of the query output (e.g., based on estimated predicate
selectivity). As an exercise, consider these heuristics in

detail: when do they make sense, and on what inputs
will they fail? How might they be improved?

Using these cost estimates, the optimizer uses a dy-
namic programming algorithm to construct a plan for the
query. The optimizer defines a set of physical operators
that implement a given logical operator (e.g., looking up
a tuple using a full ’segment’ scan versus an index). Us-
ing this set, the optimizer iteratively constructs a ”left-
deep” tree of operators that in turn uses the cost heuris-
tics to minimize the total amount of estimated work re-
quired to run the operators, accounting for “interesting
orders” required by upstream consumers. This avoids
having to consider all possible orderings of operators
but is still exponential in the plan size; as we discuss in
Chapter 7, modern query optimizers still struggle with
large plans (e.g., many-way joins). Additionally, while
the Selinger et al. optimizer performs compilation in ad-
vance, other early systems, like Ingres [150] interpreted
the query plan – in effect, on a tuple-by-tuple basis.

Like almost all query optimizers, the Selinger et al.
optimizer is not actually ”optimal” – there is no guaran-
tee that the plan that the optimizer chooses will be the
fastest or cheapest. The relational optimizer is closer in
spirit to code optimization routines within modern lan-
guage compilers (i.e., will perform a best-effort search)
rather than mathematical optimization routines (i.e., will
find the best solution). However, many of today’s re-
lational engines adopt the basic methodology from the

8

Readings in Database Systems, 5th Edition (2015)

paper, including the use of binary operators and cost es-
timation.

Concurrency Control
Our first paper on transactions, from Gray et al.,

introduces two classic ideas: multi-granularity locking
and multiple lock modes. The paper in fact reads as two
separate papers.

First, the paper presents the concept of multi-
granularity locking. The problem here is simple: given
a database with a hierarchical structure, how should we
perform mutual exclusion? When should we lock at a
coarse granularity (e.g., the whole database) versus a
finer granularity (e.g., a single record), and how can we
support concurrent access to different portions of the hi-
erarchy at once? While Gray et al.’s hierarchical lay-
out (consisting of databases, areas, files, indexes, and
records) differs slightly from that of a modern database
system, all but the most rudimentary database locking
systems adapt their proposals today.

Second, the paper develops the concept of multiple
degrees of isolation. As Gray et al. remind us, a goal
of concurrency control is to maintain data that is ”con-
sistent” in that it obeys some logical assertions. Classi-
cally, database systems used serializable transactions as
a means of enforcing consistency: if individual transac-
tions each leave the database in a ”consistent” state, then
a serializable execution (equivalent to some serial exe-
cution of the transactions) will guarantee that all trans-
actions observe a ”consistent” state of the database [57].
Gray et al.’s ”Degree 3” protocol describes the classic
(strict) ”two-phase locking” (2PL), which guarantees se-
rializable execution and is a major concept in transaction
processing.

However, serializability is often considered too ex-
pensive to enforce. To improve performance, database
systems often instead execute transactions using non-
serializable isolation. In the paper here, holding locks
is expensive: waiting for a lock in the case of a conflict
takes time, and, in the event of a deadlock, might take
forever (or cause aborts). Therefore, as early as 1973,
database systems such as IMS and System R began to
experiment with non-serializable policies. In a lock-
based concurrency control system, these policies are im-
plemented by holding locks for shorter durations. This
allows greater concurrency, may lead to fewer deadlocks
and system-induced aborts, and, in a distributed setting,
may permit greater availability of operation.

In the second half of this paper, Gray et al. provide a
rudimentary formalization of the behavior of these lock-
based policies. Today, they are prevalent; as we discuss
in Chapter 6, non-serializable isolation is the default in a
majority of commercial and open source RDBMSs, and
some RDBMSs do not offer serializability at all. Degree
2 is now typically called Repeatable Read isolation and
Degree 1 is now called Read Committed isolation, while
Degree 0 is infrequently used [27]. The paper also dis-
cusses the important notion of recoverability: policies
under which a transaction can be aborted (or ”undone”)
without affecting other transactions. All but Degree 0
transactions satisfy this property.

A wide range of alternative concurrency control
mechanisms followed Gray et al.’s pioneering work on
lock-based serializability. As hardware, application de-
mands, and access patterns have changed, so have con-
currency control subsystems. However, one property of
concurrency control remains a near certainty: there is
no unilateral “best” mechanism in concurrency control.
The optimal strategy is workload-dependent. To illus-
trate this point, we’ve included a study from Agrawal,
Carey, and Livny. Although dated, this paper’s method-
ology and broad conclusions remain on target. It’s a
great example of thoughtful, implementation-agnostic
performance analysis work that can provide valuable
lessons over time.

Methodologically, the ability to perform so-called
”back of the envelope” calculations is a valuable skill:
quickly estimating a metric of interest using crude arith-
metic to arrive at an answer within an order of magni-
tude of the correct value can save hours or even years of
systems implementation and performance analysis. This
is a long and useful tradition in database systems, from
the “Five Minute Rule” [73] to Google’s “Numbers Ev-
eryone Should Know” [48]. While some of the lessons
drawn from these estimates are transient [69, 66], often
the conclusions provide long-term lessons.

However, for analysis of complex systems such as
concurrency control, simulation can be a valuable in-
termediate step between back of the envelope and full-
blown systems benchmarking. The Agrawal study is an
example of this approach: the authors use a carefully
designed system and user model to simulate locking,
restart-based, and optimistic concurrency control.

Several aspects of the evaluation are particularly
valuable. First, there is a ”crossover” point in almost
every graph: there aren’t clear winners, as the best-

9

Readings in Database Systems, 5th Edition (2015)

performing mechanism depends on the workload and
system configuration. In contrast, virtually every per-
formance study without a crossover point is likely to
be uninteresting. If a scheme “always wins,” the study
should contain an analytical analysis, or, ideally, a proof
of why this is the case. Second, the authors consider
a wide range of system configurations; they investigate
and discuss almost all parameters of their model. Third,
many of the graphs exhibit non-monotonicity (i.e., don’t
always go up and to the right); this a product of thrash-
ing and resource limitations. As the authors illustrate,
an assumption of infinite resources leads to dramatically
different conclusions. A less careful model that made
this assumption implicit would be much less useful.

Finally, the study’s conclusions are sensible. The
primary cost of restart-based methods is ”wasted” work
in the event of conflicts. When resources are plentiful,
speculation makes sense: wasted work is less expen-
sive, and, in the event of infinite resources, it is free.
However, in the event of more limited resources, block-
ing strategies will consume fewer resources and offer
better overall performance. Again, there is no unilat-
erally optimal choice. However, the paper’s conclud-
ing remarks have proven prescient: computing resources
are still scarce, and, in fact, few commodity systems to-
day employ entirely restart-based methods. However, as
technology ratios – disk, network, CPU speeds – con-
tinue to change, re-visiting this trade-off is valuable.

Database Recovery
Another major problem in transaction processing

is maintaining durability: the effects of transaction
processing should survive system failures. A near-
ubiquitous technique for maintaining durability is to
perform logging: during transaction execution, transac-
tion operations are stored on fault-tolerant media (e.g.,
hard drives or SSDs) in a log. Everyone working in
data systems should understand how write-ahead log-
ging works, preferably in some detail.

The canonical algorithm for implementing a “No
Force, Steal” WAL-based recovery manager is IBM’s
ARIES algorithm, the subject of our next paper. (Se-
nior database researchers may tell you that very similar
ideas were invented at the same time at places like Tan-
dem and Oracle.) In ARIES, the database need not write
dirty pages to disk at commit time (“No Force”), and
the database can flush dirty pages to disk at any time
(“Steal”) [78]; these policies allow high performance

and are present in almost every commercial RDBMS of-
fering but in turn add complexity to the database. The
basic idea in ARIES is to perform crash recovery in
three stages. First, ARIES performs an analysis phase
by replaying the log forwards in order to determine
which transactions were in progress at the time of the
crash. Second, ARIES performs a redo stage by (again)
replaying the log and (this time) performing the effects
of any transactions that were in progress at the time of
the crash. Third, ARIES performs an undo stage by
playing the log backwards and undoing the effect of un-
committed transactions. Thus, the key idea in ARIES is
to ”repeat history” to perform recovery; in fact, the undo
phase can execute the same logic that is used to abort a
transaction during normal operation.

ARIES should be a fairly simple paper but it is per-
haps the most complicated paper in this collection. In
graduate database courses, this paper is a rite of passage.
However, this material is fundamental, so it is important
to understand. Fortunately, Ramakrishnan and Gehrke’s
undergraduate textbook [127] and a survey paper by
Michael Franklin [61] each provide a milder treatment.
The full ARIES paper we have included here is com-
plicated significantly by its diversionary discussions of
the drawbacks of alternative design decisions along the
way. On the first pass, we encourage readers to ignore
this material and focus solely on the ARIES approach.
The drawbacks of alternatives are important but should
be saved for a more careful second or third read. Aside
from its organization, the discussion of ARIES proto-
cols is further complicated by discussions of managing
internal state like indexes (i.e., nested top actions and
logical undo logging — the latter of which is also used
in exotic schemes like Escrow transactions [124]) and
techniques to minimize downtime during recovery. In
practice, it is important for recovery time to appear as
short as possible; this is tricky to achieve.

Distribution
Our final paper in this chapter concerns transaction

execution in a distributed environment. This topic is
especially important today, as an increasing number of
databases are distributed – either replicated, with mul-
tiple copies of data on different servers, or partitioned,
with data items stored on disjoint servers (or both). De-
spite offering benefits to capacity, durability, and avail-
ability, distribution introduces a new set of concerns.
Servers may fail and network links may be unreliable.
In the absence of failures, network communication may

10

Readings in Database Systems, 5th Edition (2015)

be costly.

We concentrate on one of the core techniques in
distributed transaction processing: atomic commitment
(AC). Very informally, given a transaction that executes
on multiple servers (whether multiple replicas, multi-
ple partitions, or both), AC ensures that the transac-
tion either commits or aborts on all of them. The clas-
sic algorithm for achieving AC dates to the mid-1970s
and is called Two-Phase Commit (2PC; not to be con-
fused with 2PL above!) [67, 100]. In addition to pro-
viding a good overview of 2PC and interactions be-
tween the commit protocol and the WAL, the paper here
contains two variants of AC that improve its perfor-
mance. The Presumed Abort variant allows processes
to avoid forcing an abort decision to disk or acknowl-
edge aborts, reducing disk utilization and network traf-
fic. The Presumed Commit optimization is similar, op-
timizing space and network traffic when more transac-
tions commit. Note the complexity of the interactions
between the 2PC protocol, local storage, and the local
transaction manager; the details are important, and cor-
rect implementation of these protocols can be challeng-
ing.

The possibility of failures substantially complicates
AC (and most problems in distributed computing). For
example, in 2PC, what happens if a coordinator and par-
ticipant both fail after all participants have sent their
votes but before the coordinator has heard from the
failed participant? The remaining participants will not
know whether or to commit or abort the transaction: did
the failed participant vote YES or vote NO? The partic-
ipants cannot safely continue. In fact, any implemen-
tation of AC may block, or fail to make progress, when
operating over an unreliable network [28]. Coupled with
a serializable concurrency control mechanism, blocking
AC means throughput may stall. As a result, a related
set of AC algorithms examined AC under relaxed as-

sumptions regarding both the network (e.g., by assum-
ing a synchronous network) [145] and the information
available to servers (e.g., by making use of a ”failure
detector” that determines when nodes fail) [76].

Finally, many readers may be familiar with the
closely related problem of consensus or may have heard
of consensus implementations such as the Paxos algo-
rithm. In consensus, any proposal can be chosen, as
long as all processes eventually will agree on it. (In
contrast, in AC, any individual participant can vote NO,
after which all participants must abort.) This makes
consensus an “easier” problem than AC [75], but, like
AC, any implementation of consensus can also block in
certain scenarios [60]. In modern distributed databases,
consensus is often used as the basis for replication, to
ensure replicas apply updates in the same order, an in-
stance of state-machine replication (see Schneider’s tu-
torial [141]). AC is often used to execute transactions
that span multiple partitions. Paxos by Lamport [99]
is one of the earliest (and most famous, due in part to
a presentation that rivals ARIES in complexity) imple-
mentations of consensus. However, the Viewstamped
Replication [102] and Raft [125], ZAB [92], and Multi-
Paxos [35] algorithms may be more helpful in practice.
This is because these algorithms implement a distributed
log abstraction (rather than a ’consensus object’ as in the
original Paxos paper).

Unfortunately, the database and distributed comput-
ing communities are somewhat separate. Despite shared
interests in replicated data, transfer of ideas between the
two were limited for many years. In the era of cloud and
Internet-scale data management, this gap has shrunk.
For example, Gray and Lamport collaborated in 2006
on Paxos Commit [71], an interesting algorithm com-
bining AC and Lamport’s Paxos. There is still much to
do in this intersection, and the number of “techniques
everyone should know” in this space has grown.

11

Readings in Database Systems, 5th Edition (2015)

Chapter 4: New DBMS Architectures
Introduced by Michael Stonebraker

Selected Readings:

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond
Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, Stan Zdonik. C-store: A
Column-oriented DBMS. SIGMOD, 2005.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,
Mike Zwilling. Hekaton: SQL Server’s Memory-optimized OLTP Engine. SIGMOD, 2013.

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, Michael Stonebraker. OLTP Through the Looking
Glass, and What We Found There. SIGMOD, 2008.

Probably the most important thing that has happened
in the DBMS landscape is the death of “one size fits
all”. Until the early 2000’s the traditional disk-based
row-store architecture was omni-present. In effect, the
commercial vendors had a hammer and everything was
a nail.

In the last fifteen years, there have been several ma-
jor upheavals, which we discuss in turn.

First, the community realized that column stores are
dramatically superior to row stores in the data ware-
house marketplace. Data warehouses found early accep-
tance in customer facing retail environments and quickly
spread to customer facing data in general. Warehouses
recorded historical information on customer transac-
tions. In effect, this is the who-what-why-when-where
of each customer interaction.

The conventional wisdom is to structure a data ware-
house around a central Fact table in which this trans-
actional information is recorded. Surrounding this are
dimension tables which record information that can be
factored out of the Fact table. In a retail scenario one
has dimension tables for Stores, Customers, Products
and Time. The result is a so-called star schema [96]. If
stores are grouped into regions, then there may be mul-
tiple levels of dimension tables and a snowflake schema
results.

The key observation is that Fact tables are gener-
ally “fat” and often contain a hundred or more attributes.
Obviously, they also “long” since there are many, many
facts to record. In general, the queries to a data ware-
house are a mix of repeated requests (produce a mon-
thy sales report by store) and “ad hoc” ones. In a retail
warehouse, for example, one might want to know what

is selling in the Northeast when a snowstorm occurs and
what is selling along the Atlantic seaboard during hurri-
canes.

Moreover, nobody runs a select * query to fetch all
of the rows in the Fact table. Instead, they invariably
specify an aggregate, which retrieves a half-dozen at-
tributes out of the 100 in the table. The next query re-
trieves a different set, and there is little-to-no locality
among the filtering criteria.

In this use case, it is clear that a column store will
move a factor of 16 less data from the disk to main mem-
ory than a row store will (6 columns versus 100). Hence,
it has an unfair advantage. Furthermore, consider a stor-
age block. In a column store, there is a single attribute
on that block, while a row store will have 100. Com-
pression will clearly work better on one attribute than
on 100. In addition, row stores have a header on the
front of each record (in SQLServer it is apparently 16
bytes). In contrast, column stores are careful to have no
such header.

Lastly, a row-based executor has an inner loop
whereby a record is examined for validity in the output.
Hence, the overhead of the inner loop, which is con-
siderable, is paid per record examined. In contrast, the
fundamental operation of a column store is to retrieve a
column and pick out the qualifying items. As such, the
inner-loop overhead is paid once per column examined
and not once per row examined. As such a column ex-
ecutor is way more efficient in CPU time and retrieves
way less data from the disk. In most real-world environ-
ments, column stores are 50–100 times faster than row
stores.

Early column stores included Sybase IQ [108],

12

Readings in Database Systems, 5th Edition (2015)

which appeared in the 1990s, and MonetDB [30]. How-
ever, the technology dates to the 1970s [25, 104]. In
the 2000’s C-Store/Vertica appeared as well-financed
startup with a high performance implementation. Over
the next decade the entire data warehouse market mor-
phed from a row-store world to a column store world.
Arguably, Sybase IQ could have done the same thing
somewhat earlier, if Sybase had invested more aggres-
sively in the technology and done a multi-node imple-
mentation. The advantages of a column executor are
persuasively discussed in [30], although it is “down in
the weeds” and hard to read.

The second major sea change was the precipitous de-
cline in main memory prices. At the present time, one
can buy a 1Terabyte for perhaps $25,000, and a high per-
formance computing cluster with a few terabytes can be
bought for maybe $100K. The key insight is that OLTP
data bases are just not that big. One terabyte is a very
big OLTP data base, and is a candidate for main memory
deployment. As noted in the looking glass paper in this
section, one does not want to run a disk-based row store
when data fits in main memory the overhead is just way
too high.

In effect, the OLTP marketplace is now becoming
a main memory DBMS marketplace. Again, traditional
disk-based row stores are just not competitive. To work
well, new solutions are needed for concurrency control,
crash recovery, and multi-threading, and I expect OLTP
architectures to evolve over the next few years.

My current best guess is that nobody will use tradi-
tional two phase locking. Techniques based on times-
tamp ordering or multiple versions are likely to prevail.
The third paper in this section discusses Hekaton, which
implements a state-of-the art MVCC scheme.

Crash recovery must also be dealt with. In general,
the solution proposed is replication, and on-line failover,
which was pioneered by Tandem two decades ago. The

traditional wisdom is to write a log, move the log over
the network, and then roll forward at the backup site.
This active-passive architecture has been shown in [111]
to be a factor of 3 inferior to an active-active scheme
where the transactions is simply run at each replica. If
one runs an active-active scheme, then one must en-
sure that transactions are run in the same order at each
replica. Unfortunately, MVCC does not do this. This
has led to interest in deterministic concurrency control
schemes, which are likely to be wildly faster in an end-
to-end system that MVCC.

In any case, OLTP is going to move to main memory
deployment, and a new class of main memory DBMSs
is unfolding to support this use case.

The third phenomenon that has unfolded is the “no
SQL” movement. In essence, there are 100 or so
DBMSs, which support a variety of data models and
have the following two characteristics:

1. “Out of box” experience. They are easy for a pro-
grammer to get going and do something produc-
tive. RDBMSs, in contrast, are very heavyweight,
requiring a schema up front.

2. Support for semi-structured data. If every record
can have values for different attributes, then a tra-
ditional row store will have very, very wide tuples,
and be very sparse, and therefore inefficient.

This is a wake-up call to the commercial vendors to
make systems that are easier to use and support semi-
structured data types, such as JSON. In general, I expect
the No SQL market to merge with the SQL market over
time as RDBMSs react to the two points noted above.

The fourth sea change is the emergence of the
Hadoop/HDFS/Spark environment, which is discussed
in Chapter 6.

13

Readings in Database Systems, 5th Edition (2015)

Chapter 5: Large-Scale Dataflow Engines
Introduced by Peter Bailis

Selected Readings:

Jeff Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI, 2004.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu. DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language. OSDI, 2008.

Of the many developments in data management over
the past decade, MapReduce and subsequent large-scale
data processing systems have been among the most dis-
ruptive and the most controversial. Cheap commodity
storage and rising data volumes led many Internet ser-
vice vendors to discard conventional database systems
and data warehouses and build custom, home-grown en-
gines instead. Google’s string of publications on their
large-scale systems, including Google File System [62],
MapReduce, Chubby [32], and BigTable [37], are per-
haps the most famous and influential in the market. In
almost all cases, these new, homegrown systems imple-
mented a small subset of the features found in conven-
tional databases, including high-level languages, query
optimizers, and efficient execution strategies. However,
these systems and the resulting open source Hadoop
ecosystem proved highly popular with many developers.
This led to considerable investment, marketing, research
interest, and development on these platforms, which, to-
day are in flux, but, as an ecosystem, have come to re-
semble traditional data warehouses—with some impor-
tant modifications. We reflect on these trends here.

History and Successors
Our first reading is the original Google MapReduce

paper from 2004. MapReduce was a library built for
simplifying parallel, distributed computation over dis-
tributed data at Google’s scale—particularly, the batch
rebuild of web search indexes from crawled pages. It is
unlikely that, at the time, a traditional data warehouse
could have handled this workload. However, compared
to a conventional data warehouse, MapReduce provides
a very low-level interface (two-stage dataflow) that is
closely tied to a fault-tolerant execution strategy (in-
termediate materialization between two-stage dataflow).
Equally importantly, MapReduce was designed as a li-
brary for parallel programming rather than an end-to-
end data warehousing solution; for example, MapRe-

duce delegates storage to Google File System. At the
time, members of the database community decried the
architecture as simplistic, inefficient, and of limited
use [53].

While the original MapReduce paper was released
in 2003, there was relatively little additional activity ex-
ternal to Google until 2006, when Yahoo! open-sourced
the Hadoop MapReduce implementation. Subsequently,
there was an explosion of interest: within a year, a
range of projects including Dryad (Microsoft) [89], Hive
(Facebook) [156], Pig (Yahoo) [123] were all under de-
velopment. These systems, which we will call post-
MapReduce systems, gained considerable traction with
developers—who were largely concentrated in Silicon
Valley—as well as serious VC investment. A multi-
tude of research spanning the systems, databases, and
networking communities investigated issues including
scheduling, straggler mitigation, fault tolerance, UDF
query optimization, and alternative programming mod-
els [16].

Almost immediately, post-MapReduce systems ex-
panded their interface and functionality to include more
sophisticated declarative interfaces, query optimiza-
tion strategies, and efficient runtimes. Today’s post-
MapReduce systems have come to implement a growing
proportion of the feature set of conventional RDBMSs.
The latest generation of data processing engines such
as Spark [163], F1 [143], Impala [98], Tez [1], Na-
iad [119], Flink/Stratosphere [9], AsterixDB [10], and
Drill [82] frequently i) expose higher-level query lan-
guages such as SQL, ii) more advanced execution strate-
gies, including the ability to process general graphs of
operators, and iii) use indexes and other functionality
of structured input data sources when possible. In the
Hadoop ecosystem, dataflow engines have become the
substrate for a suite of higher-level functionality and
declarative interfaces, including SQL [15, 156], graph
processing [64, 110], and machine learning [63, 146].

14

Readings in Database Systems, 5th Edition (2015)

There is also increasing interest in stream processing
functionality, revisiting many of the concepts pioneered
in the database community in the 2000s. A growing
commercial and open source ecosystem has developed
”connectors” to various structured and semi-structured
data sources, catalog functionality (e.g., HCatalog), and
data serving and limited transactional capabilities (e.g.,
HBase). Much of this functionality, such as the typical
query optimizers in these frameworks, is rudimentary
compared to many mature commercial databases but is
quickly evolving.

DryadLINQ, our second selected reading for this
section, is perhaps most interesting for its interface: a
set of embedded language bindings for data processing
that integrates seamlessly with Microsoft’s .NET LINQ
to provide a parallelized collections library. DryadLINQ
executes queries via the earlier Dryad system [89],
which implemented a runtime for arbitrary dataflow
graphs using a replay-based fault tolerance. While
DryadLINQ still restricts programmers to a set of side-
effect free dataset transformations (including “SQL-
like” operations), it presents a considerably higher-
level interface than Map Reduce. DryadLINQ’s lan-
guage integration, lightweight fault tolerance, and ba-
sic query optimization techniques proved influential in
later dataflow systems, including Apache Spark [163]
and Microsoft’s Naiad [119].

Impact and Legacy
There are at least three lasting impacts of the

MapReduce phenomenon that might not have occurred
otherwise. These ideas are – like distributed dataflow
itself – not necessarily novel, but the ecosystem of post-
MapReduce dataflow and storage systems have broadly
increased their impact:

1.) Schema flexibility. Perhaps most importantly, tradi-
tional data warehouse systems are walled gardens: in-
gested data is pristine, curated, and has structure. In
contrast, MapReduce systems process arbitrarily struc-
tured data, whether clean or dirty, curated or not. There
is no loading step. This means users can store data first
and consider what to do with it later. Coupled with the
fact that storage (e.g., in the Hadoop File System) is con-
siderably cheaper than in a traditional data warehouse,
users can afford to retain data for longer and longer. This
is a major shift from traditional data warehouses and is
a key factor behind the rise and gathering of ”Big Data.”
A growing number of storage formats (e.g., Avro, Par-

quet, RCFile) marry semi-structured data and advances
in storage such as columnar layouts. In contrast with
XML, this newest wave of semi-structured data is even
more flexible. As a result, extract-transform-load (ETL)
tasks are major workload for post-MapReduce engines.
It is difficult to overstate the impact of schema flexibility
on the modern practice of data management at all levels,
from analyst to programmer and analytics vendor, and
we believe it will become even more important in the
future. However, this heterogeneity is not free: curating
such “data lakes” is expensive (much more than storage)
and is a topic we consider in depth in Chapter 12.

2.) Interface flexibility. Today, most all users interact
with Big Data engines in SQL-like languages. However,
these engines also allow users to program using a com-
bination of paradigms. For example, an organization
might use imperative code to perform file parsing, SQL
to project a column, and machine learning subroutines to
cluster the results – all within a single framework. Tight,
idiomatic language integration as in DryadLINQ is com-
monplace, further improving programmability. While
traditional database engines historically supported user-
defined functions, these new engines’ interfaces make
user-defined computations simpler to express and also
make it easier to integrate the results of user-defined
computations with the results of queries expressed using
traditional relational constructs like SQL. Interface flex-
ibility and integration is a strong selling point for data
analytics offerings; the ability to combine ETL, analyt-
ics, and post-processing in a single system is remark-
ably convenient to programmers — but not necessarily
to users of traditional BI tools, which make use of tradi-
tional JDBC interfaces.

3.) Architectural flexibility. A common critique of
RDBMSs is that their architecture is too tightly coupled:
storage, query processing, memory management, trans-
action processing, and so on are closely intertwined,
with a lack of clear interfaces between them in prac-
tice. In contrast, as a result of its bottom-up devel-
opment, the Hadoop ecosystem has effectively built a
data warehouse as a series of modules. Today, organi-
zations can write and run programs against the raw file
system (e.g., HDFS), any number of dataflow engines
(e.g., Spark), using advanced analytics packages (e.g.,
GraphLab [105], Parameter Server [101]), or via SQL
(e.g., Impala [98]). This flexibility adds performance
overhead, but the ability to mix and match components
and analytics packages is unprecedented at this scale.
This architectural flexibility is perhaps most interesting

15

Readings in Database Systems, 5th Edition (2015)

to systems builders and vendors, who have additional
degrees of freedom in designing their infrastructure of-
ferings.

To summarize, a dominant theme in today’s dis-
tributed data management infrastructure is flexibility
and heterogeneity: of storage formats, of computation
paradigms, and of systems implementations. Of these,
storage format heterogeneity is probably the highest im-
pact by an order of magnitude or more, simply because
it impacts novices, experts, and architects alike. In con-
trast, heterogeneity of computation paradigms most im-
pacts experts and architects, while heterogeneity of sys-
tems implementations most impacts architects. All three
are relevant and exciting developments for database re-
search, with lingering questions regarding market im-
pact and longevity.

Looking Ahead
In a sense, MapReduce was a short-lived, extreme

architecture that blew open a design space. The archi-
tecture was simple and highly scalable, and its success
in the open source domain led many to realize that there
was demand for alternative solutions and the principle
of flexibility that it embodied (not to mention a mar-
ket opportunity for cheaper data warehousing solutions
based on open source). The resulting interest is still sur-
prising to many and is due to many factors, including
community zeitgeist, clever marketing, economics, and
technology shifts. It is interesting to consider which dif-
ferences between these new systems and RDBMSs are
fundamental and which are due to engineering improve-
ments.

Today, there is still debate about the appropriate ar-
chitecture for large-scale data processing. As an exam-
ple, Rasmussen et al. provide a strong argument for why
intermediate fault tolerance is not necessary except in
very large (100+ node) clusters [132]. As another ex-
ample, McSherry et al. have colorfully illustrated that
many workloads can be efficiently processed using a
single server (or thread!), eliminating the need for dis-
tribution at all [113]. Recently, systems such as the
GraphLab project [105] suggested that domain-specific
systems are necessary for performance; later work, in-
cluding Grail [58] and GraphX [64], argued this need
not be the case. A further wave of recent proposals have
also suggested new interfaces and systems for stream
processing, graph processing, asynchronous program-
ming, and general-purpose machine learning. Are these

specialized systems actually required, or can one analyt-
ics engine rule them all? Time will tell, but I perceive a
push towards consolidation.

Finally, we would be remiss not to mention Spark,
which is only six years old but is increasingly pop-
ular with developers and is very well supported both
by VC-backed startups (e.g., Databricks) and by es-
tablished firms such as Cloudera and IBM. While we
have included DryadLINQ as an example of a post-
MapReduce system due to its historical significance and
technical depth, the Spark paper [163], written in the
early days of the project, and recent extensions includ-
ing SparkSQL [15], are worthwhile additional reads.
Like Hadoop, Spark rallied major interest at a rela-
tively early stage of maturity. Today, Spark still has a
ways to go before its feature set rivals that of a tradi-
tional data warehouse. However, its feature set is rapidly
growing and expectations of Spark as the successor to
MapReduce in the Hadoop ecosystem are high; for ex-
ample, Cloudera is working to replace MapReduce with
Spark in the Hadoop ecosystem [81]. Time will tell
whether these expectations are accurate; in the mean-
time, the gaps between traditional warehouses and post-
MapReduce systems are quickly closing, resulting in
systems that are as good at data warehousing as tradi-
tional systems, but also much more.

Commentary: Michael Stonebraker
26 October 2015

Recently, there has been considerable interest in data an-
alytics as part of the marketing moniker “big data”. Histori-
cally, this meant business intelligence (BI) analytics and was
serviced by BI applications (Cognos, Business Objects, etc.)
talking to a relational data warehouse (such as Teradata, Ver-
tica, Red Shift, Greenplum, etc.). More recently it has be-
come associated with “data science”. In this context, let’s start
ten years ago with Map-Reduce, which was purpose-built by
Google to support their web crawl data base. Then, the market-
ing guys took over with the basic argument: “Google is smart;
Map-Reduce is Google’s next big thing, so it must be good”.
Cloudera, Hortonworks and Facebook were in the vanguard in
hyping Map-Reduce (and its open source look-alike Hadoop).
A few years ago, the market was abuzz drinking the Map-
Reduce koolaid. About the same time, Google stopped using
Map-Reduce for the application that it was purpose-built for,
moving instead to Big Table. With a delay of about 5 years,
the rest of the world is seeing what Google figured out ear-
lier; Map-Reduce is not an architecture with any broad scale

16

Readings in Database Systems, 5th Edition (2015)

applicability.

In effect Map-Reduce suffers from the following two
problems:

1. It is inappropriate as a platform on which to build data
warehouse products. There is no interface inside any
commercial data warehouse product which looks like
Map-Reduce, and for good reason. Hence, DBMSs do
not want this sort of platform.

2. It is inappropriate as a platform on which to build dis-
tributed applications. Not only is the Map-Reduce in-
terface not flexible enough for distributed applications
but also a message passing system that uses the file sys-
tem is way too slow to be interesting.

Of course, that has not stopped the Map-Reduce vendors.
They have simply rebranded their platform to be HDFS (a file
system) and have built products based on HDFS that do not
include Map-Reduce. For example, Cloudera has recently in-
troduced Impala, which is a SQL engine, not built on Map-
Reduce. In point of fact, Impala does not really use HDFS
either, choosing to drill through that layer to read and write
the underlying local Linux files directly. HortonWorks and
Facebook have similar projects underway. As such the Map-
Reduce crowd has turned into a SQL crowd and Map-Reduce,
as an interface, is history. Of course, HDFS has serious prob-
lems when used by a SQL engine, so it is not clear that it
will have any legs, but that remains to be seen. In any case,
the Map-Reduce-HDFS market will merge with the SQL-data
warehouse market; and may the best systems prevail. In sum-
mary, Map-Reduce has failed as a distributed systems plat-
form, and vendors are using HDFS as a file system under data
warehouse products.

This brings us to Spark. The original argument for Spark
is that it is a faster version of Map-Reduce. It is a main mem-
ory platform with a fast message passing interface. Hence,

it should not suffer from the performance problems of Map-
Reduce when used for distributed applications. However, ac-
cording to Spark’s lead author Matei Zaharia, more than 70%
of the Spark accesses are through SparkSQL. In effect, Spark
is being used as a SQL engine, not as a distributed applications
platform! In this context Spark has an identity problem. If it
is a SQL platform, then it needs some mechanism for persis-
tence, indexing, sharing of main memory between users, meta
data catalogs, etc. to be competitive in the SQL/data ware-
house space. It seems likely that Spark will turn into a data
warehouse platform, following Hadoop along the same path.

On the other hand, 30% of Spark accesses are not to
SparkSQL and are primarily from Scala. Presumably this is
a distributed computing load. In this context, Spark is a rea-
sonable distributed computing platform. However, there are a
few issues to consider. First, the average data scientist does
a mixture of data management and analytics. Higher perfor-
mance comes from tightly coupling the two. In Spark there
is no such coupling, since Spark’s data formats are not neces-
sarily common across these two tasks. Second, Spark is main
memory-only (at least for now). Scalability requirements will
presumably get this fixed over time. As such, it will be inter-
esting to see how Spark evolves off into the future.

In summary, I would like to offer the following takeaways:

• Just because Google thinks something is a good idea
does not mean you should adopt it.

• Disbelieve all marketing spin, and figure out what ben-
efit any given product actually has. This should be es-
pecially applied to performance claims.

• The community of programmers has a love affair with
“the next shiny object”. This is likely to create “churn”
in your organization, as the “half-life” of shiny objects
may be quite short.

17

Readings in Database Systems, 5th Edition (2015)

Chapter 6: Weak Isolation and Distribution
Introduced by Peter Bailis

Selected Readings:

Atul Adya, Barbara Liskov, and Patrick O’Neil. Generalized Isolation Level Definitions. ICDE, 2000.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-
Value Store. SOSP, 2007.

Eric Brewer. CAP Twelve Years Later: How the ”Rules” Have Changed. IEEE Computer, 45, 2 (2012).

Conventional database wisdom dictates that serializ-
able transactions are the canonical solution to the prob-
lem of concurrent programming, but this is seldom the
case in real-world databases. In practice, database sys-
tems instead overwhelmingly implement concurrency
control that is non-serializable, exposing users to the
possibility that their transactions will not appear to have
executed in some serial order. In this chapter, we dis-
cuss why the use of this so-called “weak isolation” is so
widespread, what these non-serializable isolation modes
actually do, and why reasoning about them is so diffi-
cult.

Overview and Prevalence
Even in the earliest days of database systems (see

Chapter 3), systems builders realized that implementing
serializability is expensive. The requirement that trans-
actions appear to execute sequentially has profound con-
sequences for the degree of concurrency a database can
achieve. If transactions access disjoint sets of data items
in the database, serializability is effectively “free”: un-
der these disjoint access patterns, a serializable sched-
ule admits data parallelism. However, if transactions
contend on the same data items, in the worst case, the
system cannot process them with any parallelism what-
soever. This property is fundamental to serializabil-
ity and independent of the actual implementation: be-
cause transactions cannot safely make progress inde-
pendently under all workloads (i.e., they must coordi-
nate), any implementation of serializability may, in ef-
fect, require serial execution. In practice, this means
that transactions may need to wait, decreasing through-
put while increasing latency. Transaction processing ex-
pert Phil Bernstein suggests that serializability typically
incurs a three-fold performance penalty on a single-
node database compared to one of the most common

weak isolation levels called Read Committed [29]. De-
pending on the implementation, serializability may also
lead to more aborts, restarted transactions, and/or dead-
locks. In distributed databases, these costs increase be-
cause networked communication is expensive, increas-
ing the time required to execute serial critical sections
(e.g., holding locks); we have observed multiple order-
of-magnitude performance penalties under adverse con-
ditions [20].

As a result, instead of implementing serializability,
database system designers instead often implemented
weaker models. Under weak isolation, transactions are
not guaranteed to observe serializable behavior. Instead,
transactions will observe a range of anomalies (or “phe-
nomena”): behaviors that could not have arisen in a se-
rial execution. The exact anomalies depend on which
model is provided, but example anomalies include read-
ing intermediate data that another transaction produced,
reading aborted data, reading two or more different val-
ues for the same item during execution of the same
transaction, and “losing” some effects of transactions
due to concurrent writes to the same item.

These weak isolation modes are surprisingly preva-
lent. In a recent survey of eighteen SQL and “NewSQL”
databases [18], we found that only three of eighteen pro-
vided serializability by default and eight (including Or-
acle and SAP’s flagship offerings) did not offer serializ-
ability at all! This state of affairs is further complicated
by often inaccurate use of terminology: for example,
Oracle’s “serializable” isolation guarantee actually pro-
vides Snapshot Isolation, a weak isolation mode [59].
There is also a race to to bottom among vendors. Anec-
dotally, when vendor A, a major player in the trans-
action processing market, switched its default isolation
mode from serializability to Read Committed, vendor B,

18

Readings in Database Systems, 5th Edition (2015)

who still defaulted to serializability, began to lose sales
contracts during bake-offs with vendor A. Vendor B’s
database was clearly slower, so why would the customer
choose B instead of A? Unsurprisingly, vendor B now
provides Read Committed isolation by default, too.

The Key Challenge: Reasoning about
Anomalies

The primary reason why weak isolation is problem-
atic is that, depending on the application, weak isola-
tion anomalies can result in application-level inconsis-
tency: the invariants that each transaction preserves in
a serializable execution may no longer hold under weak
isolation. For example, if two users attempt to with-
draw from a bank account at the same time and their
transactions run under a weak isolation mode allow-
ing concurrent writes to the same data item (e.g., the
common Read Committed model), the users may suc-
cessfully withdraw more money than the account con-
tained (i.e., each reads the current amount, each calcu-
lates the amount following their withdrawal, then each
writes the “new” total to the database). This is not a
hypothetical scenario. In a recent, colorful example,
an attacker systematically exploited weak isolation be-
havior in the Flexcoin Bitcoin exchange; by repeatedly
and programmatically triggering non-transactional read-
modify-write behavior in the Flexcoin application (an
vulnerability under Read Committed isolation and, un-
der a more sophisticated access pattern, Snapshot Iso-
lation), the attacker was able to withdraw more Bitcoins
than she should have, thus bankrupting the exchange [2].

Perhaps surprisingly, few developers I talk with re-
garding their use of transactions are even aware that they
are running under non-serializable isolation. In fact,
in our research, we have found that many open-source
ORM-backed applications assume serializable isolation,
leading to a range of possible application integrity vi-
olations when deployed on commodity database en-
gines [19]. The developers who are aware of weak iso-
lation tend to employ a range of alternative techniques
at the application level, including explicitly acquiring
locks (e.g., SQL “SELECT FOR UPDATE”) and intro-
ducing false conflicts (e.g., writing to a dummy key un-
der Snapshot Isolation). This is highly error-prone and
negates many of the benefits of the transaction concept.

Unfortunately, specifications for weak isolation are
often incomplete, ambiguous, and even inaccurate.
These specifications have a long history dating to the

1970s. While they have improved over time, they re-
main problematic.

The earliest weak isolation modes were specified op-
erationally: as we saw in Chapter 3, popular models like
Read Committed were originally invented by modifying
the duration for which read locks were held [72]. The
definition of Read Committed was: “hold read locks for
a short duration, and hold write locks for a long dura-
tion.”

The ANSI SQL Standard later attempted to provide
an implementation-independent description of several
weak isolation modes that would apply not only to lock-
based mechanisms but also to multi-versioned and opti-
mistic methods as well. However, as Gray et al. describe
in [27], the SQL Standard is both ambiguous and under-
specified: there are multiple possible interpretations of
the English-language description, and the formalization
does not capture all behaviors of the lock-based imple-
mentations. Additionally, the ANSI SQL Standard does
not cover all isolation modes: for example, vendors had
already begun shipping production databases providing
Snapshot Isolation (and labeling it as serializable!) be-
fore Gray et al. defined it in their 1995 paper. (Sadly, as
of 2015, the ANSI SQL Standard remains unchanged.)

To complicate matters further, Gray et al.’s 1995 re-
vised formalism is also problematic: it focuses on lock-
related semantics and rules out behavior that might be
considered safe in a multi-versioned concurrency con-
trol system. Accordingly, for his 1999 Ph.D. thesis [6],
Atul Adya introduced the best formalism for weak iso-
lation that we have to date. Adya’s thesis adapts the
formalism of multi-version serialization graphs [28] to
the domain of weak isolation and describes anomalies
according to restrictions on those graphs. We include
Adya’s corresponding ICDE 2000 paper, but isolation
aficionados should consult the full thesis. Unfortunately,
Adya’s model is still underspecified in some cases (e.g.,
what exactly does G0 mean if no reads are involved?),
and implementations of these guarantees differ across
databases.

Even with a perfect specification, weak isolation is
still a real challenge to reason about. To decide whether
weak isolation is “safe,” programmers must mentally
translate their application-level consistency concerns
down to low-level read and write behavior [11]. This
is ridiculously difficult, even for seasoned concurrency
control experts. In fact, one might wonder what benefits
of transactions remain if serializability is compromised?

19

Readings in Database Systems, 5th Edition (2015)

Why is it easier to reason about Read Committed isola-
tion than no isolation at all? Given how many database
engines like Oracle run under weak isolation, how does
modern society function at all – whether users are book-
ing airline flights, administering hospitals, or perform-
ing stock trades? The literature lends few clues, casting
serious questions about the transaction concept as de-
ployed in practice today.

The most compelling argument I have encountered
for why weak isolation seems to be “okay” in prac-
tice is that few applications today experience high de-
grees of concurrency. Without concurrency, most im-
plementations of weak isolation deliver serializable re-
sults. This in turn has led to a fruitful set of research
results. Even in a distributed setting, weakly isolated
databases deliver “consistent” results: for example, at
Facebook, only 0.0004% of results returned from their
eventually consistent store were “stale” [106], and oth-
ers have found similar results [23, 159]. However, while
for many applications weak isolation is apparently not
problematic, it can be: as our Flexcoin example illus-
trates, given the possibility of errors, application writers
must be vigilant in accounting for (or otherwise explic-
itly ignoring) concurrency-related anomalies.

Weak Isolation, Distribution, and “NoSQL”
With the rise of Internet-scale services and cloud

computing, weak isolation has become even more preva-
lent. As I mentioned earlier, distribution exacerbates
overheads of serializability, and, in the event of partial
system failures (e.g., servers crashing), transactions may
stall indefinitely. As more and more programmers be-
gan to write distributed applications and used distributed
databases, these concerns became mainstream.

The past decade saw the introduction of a range of
new data stores optimized for the distributed environ-
ment, collectively called “NoSQL.” The “NoSQL” label
is unfortunately overloaded and refers to many aspects
of these stores, from lack of literal SQL support to sim-
pler data models (e.g., key-value pairs) and little to no
transactional support. Today, as in MapReduce-like sys-
tems (Chapter 5), NoSQL stores are adding many these
features. However, a notable, fundamental difference
is that these NoSQL stores frequently focus on provid-
ing better availability of operations via weaker models,
with an explicit focus on fault tolerance. (It is somewhat
ironic that, while NoSQL stores are commonly associ-
ated with the use of non-serializable guarantees, clas-

sic RDBMSs do not provide serializability by default
either.)

As an example of these NoSQL stores, we include a
paper on the Dynamo system, from Amazon, presented
at SOSP 2007. Dynamo was introduced to provide
highly available and low latency operation for Ama-
zon’s shopping cart. The paper is technically interest-
ing as it combines several techniques, including quorum
replication, Merkle tree anti-entropy, consistent hash-
ing, and version vectors. The system is entirely non-
transactional, does not provide any kind of atomic oper-
ation (e.g., compare and swap), and relies on the appli-
cation writer to reconcile divergent updates. In the limit,
any node can update any item (under hinted handoff).

By using a merge function, Dynamo adopts an “op-
timistic replication” policy: accept writes first, reconcile
divergent versions later [138, 70]. On the one hand, pre-
senting a set of divergent versions to the user is more
friendly than simply discarding some concurrent up-
dates, as in Read Committed isolation. On the other
hand, programmers must reason about merge functions.
This raises many questions: what is a suitable merge
for an application? How do we avoid throwing away
committed data? What if an operation should not have
been performed concurrently in the first place? Some
open source Dynamo clones, like Apache Cassandra, do
not provide merge operators and simply choose a “win-
ning” write based on a numerical timestamp. Others,
like Basho Riak, have adopted “libraries” of automati-
cally mergeable datatypes like counters, called Commu-
tative Replicated Data Types [142].

Dynamo also does not make promises about recency
of reads. Instead, it guarantees that, if writes stop, even-
tually all replicas of a data item will contain the same
set of writes. This eventual consistency is a remark-
ably weak guarantee: technically, an eventually consis-
tent datastore can return stale (or even garbage) data for
an indefinite amount of time [22]. In practice, data store
deployments frequently return recent data [159, 23], but,
nevertheless, users must reason about non-serializable
behavior. Moreover, in practice, many stores offer inter-
mediate forms of isolation called “session guarantees”
that ensure that users read their own writes (but not the
writes of other users); interestingly, these techniques
were developed in the early 1990s as part of the Bayou
project on mobile computing and have recently come to
prominence again [154, 153].

20

Readings in Database Systems, 5th Edition (2015)

Trade-offs and the CAP Theorem
We have also included Brewer’s 12 year retrospec-

tive on the CAP Theorem. Originally formulated fol-
lowing Brewer’s time building Inktomi, one of the first
scalable search engines, Brewer’s CAP Theorem pithily
describes trade-offs between the requirement for coordi-
nation (or “availability”) and strong guarantees like se-
rializability. While earlier results described this trade-
off [91, 47], CAP became a rallying cry for mid-2000s
developers and has considerable impact. Brewer’s arti-
cle briefly discusses performance implications of CAP,
as well as the possibility of maintaining some consis-
tency criteria without relying on coordination.

Programmability and Practice
As we have seen, weak isolation is a real chal-

lenge: its performance and availability benefits mean
it is extremely popular in deployments despite the fact
that we have little understanding of its behavior. Even
with a perfect specification, existing formulations of
weak isolation would still be a extremely difficult to rea-
son about. To decide whether weak isolation is “safe,”
programmers must mentally translate their application-
level consistency concerns down to low-level read and
write behavior [11]. This is ridiculously difficult, even
for seasoned concurrency control experts.

One quickly begins to wonder what benefits of the
transaction concept remain if serializability is compro-
mised. Why is it easier to reason about Read Commit-
ted isolation than no isolation at all? Given how many
database engines like Oracle run under weak isolation,
how does modern society function at all - whether users
are booking airline flights, administering hospitals, or
performing stock trades? The literature lends few clues,
casting serious questions about the transaction concept
as deployed in practice today.

The most compelling argument I have encountered
for why weak isolation seems to be “okay” in prac-
tice is that few applications today experience high de-
grees of concurrency. Without concurrency, most im-
plementations of weak isolation deliver serializable re-
sults. This in turn has led to a fruitful set of research
results. Even in a distributed setting, weakly isolated
databases deliver “consistent” results: for example, at
Facebook, only 0.0004% of results returned from their
eventually consistent store were “stale” [106], and oth-
ers have found similar results [23, 159]. However, while

for many applications weak isolation is apparently not
problematic, it can be: as our Flexcoin example illus-
trates, given the possibility of errors, application writers
must be vigilant in accounting for (or otherwise explic-
itly ignoring) concurrency-related anomalies.

As a result, I believe there is a serious opportunity to
investigate semantics that are not subject to the perfor-
mance and availability overheads of serializability but
are more intuitive, usable, and programmable than ex-
isting guarantees. Weak isolation has historically been
highly challenging to reason about, but this need not
be the case. We and others have found that several
high-value use cases, including index and view main-
tenance, constraint maintenance, and distributed aggre-
gation, frequently do not actually require coordination
for “correct” behavior; thus, for these use cases, serial-
izability is overkill [17, 21, 136, 142]. That is, by pro-
viding databases with additional knowledge about their
applications, database users can have their cake and eat
it too. Further identifying and exploiting these use cases
is an area ripe for research.

Conclusions
In summary, weak isolation is prevalent due to its

many benefits: less coordination, higher performance,
and greater availability. However, its semantics, risks,
and use is poorly understood, even in an academic con-
text. This is particularly baffling given the amount of
research devoted to serializable transaction processing,
which is considered by many to be a “solved problem.”
Weak isolation is arguably even more deserving of such
a thorough treatment. As I have highlighted, many chal-
lenges remain: how do modern systems even work, and
how should users program weak isolation? For now, I
offer the following take-aways:

• Non-serializable isolation is prevalent in practice
(in both classical RDBMSs and recent NoSQL
upstarts) due to its concurrency-related benefits.

• Despite this prevalence, many existing formula-
tions of non-serializable isolation are poorly spec-
ified and difficult to use.

• Research into new forms of weak isolation show
how to preserve meaningful semantics and im-
prove programmability without the expense of se-
rializability.

21

Readings in Database Systems, 5th Edition (2015)

Chapter 7: Query Optimization
Introduced by Joe Hellerstein

Selected Readings:

Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient Search.
ICDE, 1993.

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.

Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh, Miso Cilimdzic. Robust
Query Processing Through Progressive Approximation. SIGMOD, 2004.

Query optimization is one of the signature compo-
nents of database technology—the bridge that connects
declarative languages to efficient execution. Query op-
timizers have a reputation as one of the hardest parts
of a DBMS to implement well, so it’s no surprise
they remain a clear differentiator for mature commercial
DBMSs. The best of the open-source relational database
optimizers are limited by comparison, and some have
relatively naive optimizers that only work for the sim-
plest of queries.

It’s important to remember that no query optimizer
is truly producing “optimal” plans. First, they all use es-
timation techniques to guess at real plan costs, and it’s
well known that errors in these estimation techniques
can balloon—in some circumstances being as bad as
random guesses [88]. Second, optimizers use heuris-
tics to limit the search space of plans they choose, since
the problem is NP-hard [86]. One assumption that’s got-
ten significant attention recently is the traditional use of
2-table join operators; this has been shown to be the-
oretically inferior to new multi-way join algorithms in
certain cases [121].

Despite these caveats, relational query optimiza-
tion has proven successful, and has enabled relational
database systems to serve a wide range of bread-and-
butter use cases fairly well in practice. Database vendors
have invested many years into getting their optimizers
to perform reliably on a range of use cases. Users have
learned to live with limitations on the number of joins.
Optimizers still, for the most part, make declarative SQL
queries a far better choice than imperative code for most
uses.

In addition to being hard to build and tune, seri-
ous query optimizers also have a tendency to grow in-
creasingly complex over time as they evolve to han-

dle richer workloads and more corner cases. The re-
search literature on database query optimization is prac-
tically a field unto itself, full of technical details—many
of which have been discussed in the literature by re-
searchers at mature vendors like IBM and Microsoft
who work closely with product groups. For this book,
we focus on the big picture: the main architectures that
have been considered for query optimization and how
have they been reevaluated over time.

Volcano/Cascades
We begin with the state of the art. There are two

reference architectures for query optimization from the
early days of database research that cover most of the
serious optimizer implementations today. The first is
Selinger et al.’s System R optimizer described in Chap-
ter 3. System R’s optimizer is textbook material, im-
plemented in many commercial systems; every database
researcher is expected to understand it in detail. The
second is the architecture that Goetz Graefe and his col-
laborators refined across a series of research projects:
Exodus, Volcano, and Cascades. Graefe’s work is not
covered as frequently in the research literature or the
textbooks as the System R work, but it is widely used
in practice, notably in Microsoft SQL Server, but pur-
portedly in a number of other commercial systems as
well. Graefe’s papers on the topic have something of
an insider’s flavor—targeted for people who know and
care about implementing query optimizers. We chose
the Volcano paper for this book as the most approach-
able representative of the work, but aficionados should
also read the Cascades paper [65]—not only does it raise
and address a number of detailed deficiencies of Vol-
cano, but it’s the latest (and hence standard) reference
for the approach. Recently, two open-source Cascades-
style optimizers have emerged: Greenplum’s Orca op-

22

Readings in Database Systems, 5th Edition (2015)

timizer is now part of the Greenplum open source, and
Apache Calcite is an optimizer that can be used with
multiple backend query executors and languages, in-
cluding LINQ.

Graefe’s optimizer architecture is notable for two
main reasons. First, it was expressly designed to be
extensible. Volcano deserves credit for being quite
forward-looking—long predating MapReduce and the
big data stacks—in exploring the idea that dataflow
could be useful for a wide range of data-intensive ap-
plications. As a result, the Graefe optimizers are not
just for compiling SQL into a plan of dataflow itera-
tors. They can be parameterized for other input lan-
guages and execution targets; this is a highly relevant
topic in recent years with the rise of specialized data
models and languages on the one hand (see Chapter 2
and 9), and specialized execution engines on the other
(Chapter 5). The second innovation in these optimiz-
ers was the use of a top-down or goal-oriented search
strategy for finding the cheapest plan in the space of
possible plans. This design choice is connected to the
extensibility API in Graefe’s designs, but that is not in-
trinsic: the Starburst system showed how to do exten-
sibility for Selinger’s bottom-up algorithm [103]. This
“top-down” vs “bottom-up” debate for query optimiza-
tion has advocates on both sides, but no clear winner; a
similar top-down/bottom-up debate came out to be more
or less a tie in the recursive query processing literature
as well [128]. Aficionados will be interested to note that
these two bodies of literature–recursive query process-
ing and query optimizer search–were connected directly
in the Evita Raced optimizer, which implemented both
top-down and bottom-up optimizer search by using re-
cursive queries as the language for implementing an op-
timizer [43].

Adaptive Query Processing
By the late 1990’s, a handful of trends suggested that

the overall architecture of query optimization deserved
a significant rethink. These trends included:

• Continuous queries over streaming data.

• Interactive approaches to data exploration like
Online Aggregation.

• Queries over data sources that are outside the
DBMS and do not provide reliable statistics or
performance.

• Unpredictable and dynamic execution environ-
ments, including elastic and multitenant settings
and widely distributed systems like sensor net-
works.

• Opaque data and user-defined functions in
queries, where statistics can only be estimated by
observing behavior.

In addition, there was ongoing practical concern about
the theoretical fact that plan cost estimation was often
erratic for multi-operator queries [88]. As a result of
these trends, interest emerged in adaptive techniques for
processing queries, where execution plans could change
mid-query. We present two complementary points in the
design space for adaptive query processing; there is a
long survey with a more comprehensive overview [52].

Eddies

The work on eddies, represented by our second paper,
pushed hard on the issue of adaptivity: if query “re-
planning” has to occur mid-execution, why not remove
the architectural distinction between planning and exe-
cution entirely? In the eddies approach, the optimizer
is encapsulated as a dataflow operator that is itself in-
terposed along other dataflow edges. It can monitor
the rates of dataflow along those edges, so it has dy-
namic knowledge of their behavior, with whatever his-
tory it cares to record. With that ongoing flow of in-
formation, it can dynamically control the rest of the as-
pects of query planning via dataflow routing: the or-
der of commutative operators is determined by the or-
der tuples are routed through operators (the focus of
the first eddies paper that we include here) the choice
of physical operators (e.g. join algorithms, index se-
lection) is determined by routing tuples among multi-
ple alternative, potentially redundant physical operators
in the flow [129, 51] the scheduling of operators is de-
termined by buffering inputs and deciding which out-
put to deliver to next [131]. As an extension, multiple
queries can be scheduled by interposing on their flows
and sharing common operators [109]. Eddies intercept
the ongoing dataflow of query operators while they are
in flight, pipelining data from their inputs to their out-
put. For this reason it’s important that eddy routing
be implemented efficiently; Deshpande developed im-
plementation enhancements along these lines [50]. The
advantage of this pipelined approach is that eddies can
adaptively change strategies in the middle of executing a

23

Readings in Database Systems, 5th Edition (2015)

pipelined operator like a join, which is useful if a query
operator is either very long-lived (as in a streaming sys-
tem) or a very poor choice that should be abandoned
long before it runs to completion. Interestingly, the orig-
inal Ingres optimizer also had the ability to make certain
query optimization decisions on a per-tuple basis [161].

Progressive Optimization

The third paper in this section from IBM represents a
much more evolutionary approach, which extends a Sys-
tem R style optimizer with adaptivity features; this gen-
eral technique was pioneered by Kabra and DeWitt [93]
but receives a more complete treatment here. Where
eddies focused on intra-operator reoptimization (while
data is “in motion”), this work focuses on inter-operator
reoptimization (when data is “at rest”). Some of the tra-
ditional relational operators including sorting and most
hash-joins are blocking: they consume their entire in-
put before producing any output. This presents an op-
portunity after input is consumed to compare observed
statistics to optimizer predictions, and reoptimize the
“remainder” of the query plan using traditional query
optimization technique. The downside of this approach
is that it does no reoptimization while operators are con-
suming their inputs, making it inappropriate for contin-
uous queries over streams, for pipelining operators like
symmetric hash join [160] or for long-running relational
queries that have poorly-chosen operators in the initial
parts of the plan – e.g. when data is being accessed from
data sources outside the DBMS that do not provide use-
ful statistics [116, 157].

It’s worth noting that these two architectures for
adaptivity could in principle coexist: an eddy is “just”
a dataflow operator, meaning that a traditional optimizer
can generate a query plan with an eddy connecting a
set of streaming operators, and also do reoptimization
at blocking points in the dataflow in the manner of our
third paper.

Discussion
This brings us to a discussion of current trends in

dataflow architectures, especially in the open source big
data stack. Google MapReduce set back by a decade
the conversation about adaptivity of data in motion, by
baking blocking operators into the execution model as a

fault-tolerance mechanism. It was nearly impossible to
have a reasoned conversation about optimizing dataflow
pipelines in the mid-to-late 2000’s because it was incon-
sistent with the Google/Hadoop fault tolerance model.
In the last few years the discussion about execution
frameworks for big data has suddenly opened up wide,
with a quickly-growing variety of dataflow and query
systems being deployed that have more similarities than
differences (Tenzing, F1, Dremel, DryadLINQ, Naiad,
Spark, Impala, Tez, Drill, Flink, etc.) Note that all of the
motivating issues for adaptive optimization listed above
are very topical in today’s big data discussion, but not
well treated.

More generally, I would say that the “big data” com-
munity in both research and open source has been far too
slow to focus on query optimization, to the detriment
of both the current systems and the query optimization
field. To begin with, the “hand-planned” MapReduce
programming model remained a topic of conversation
for far longer than it should have. It took a long time
for the Hadoop and systems research communities to
accept that a declarative language like SQL or LINQ
is a good general-purpose interface, even while main-
taining low-level MapReduce-style dataflow program-
ming as a special-case “fast path”. More puzzling is
the fact that even when the community started building
SQL interfaces like Hive, query optimization remained
a little-discussed and poorly-implemented topic. Maybe
it’s because query optimizers are harder to build well
than query executors. Or maybe it was fallout from the
historical quality divide between commercial and open
source databases. MySQL was the open source de facto
reference for “database technology” for the preceding
decade, with a naive heuristic optimizer. Perhaps as a
result, many (most?) open source big data developers
didn’t understand—or trust—query optimizer technol-
ogy.

In any case, this tide is turning in the big data com-
munity. Declarative queries have returned as the pri-
mary interface to big data, and there are efforts under-
way in essentially all the projects to start building at
least a 1980’s-era optimizer. Given the list of issues I
mention above, I’m confident we’ll also see more inno-
vative query optimization approaches deployed in new
systems over the coming years.

24

Readings in Database Systems, 5th Edition (2015)

Chapter 8: Interactive Analytics
Introduced by Joe Hellerstein

Selected Readings:

Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman. Implementing Data Cubes Efficiently. SIGMOD,
1996.

Yihong Zhao, Prasad M. Deshpande, Jeffrey F. Naughton. An Array-Based Algorithm for Simultaneous Multidi-
mensional Aggregates. SIGMOD, 1997.

Joseph M. Hellerstein, Ron Avnur, Vijayshankar Raman. Informix under CONTROL: Online Query Processing.
Data Mining and Knowledge Discovery, 4(4), 2000, 281-314.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, Ion Stoica. BlinkDB: Queries
with Bounded Errors and Bounded Response Times on Very Large Data. EuroSys, 2013.

For decades, most database workloads have been
partitioned into two categories: (1) many small “trans-
action processing” queries that do lookups and updates
on a small number of items in a large database, and (2)
fewer big “analytic” queries that summarize large vol-
umes of data for analysis. This section is concerned with
ideas for accelerating the second category of queriespar-
ticularly to answer them at interactive speeds, and al-
low for summarization, exploration and visualization of
data.

Over the years there has been a great deal of buz-
zword bingo in industry to capture some or all of this lat-
ter workload, from “Decision Support Systems” (DSS)
to “Online Analytic Processing” (OLAP) to “Business
Intelligence” (BI) to “Dashboards” and more generally
just “Analytics”. Billions of dollars of revenue have
been associated with these labels over time, so marketers
and industry analysts worked hard over the years to de-
fine, distinguish and sometimes try to subvert them. By
now it’s a bit of a mess of nomenclature. The interested
reader can examine Wikipedia and assess conventional
wisdom on what these buzzwords came to mean and
how they might be different; be warned that it will not
be a scientifically satisfying exercise.

Here, I will try to keep things simple and somewhat
technically grounded.

Human cognition cannot process large amounts of
raw data. In order for a human to make sense of data,
the data has to be “distilled” in some way to a relatively

small set of records or visual marks. Typically this is
done by partitioning the data and running simple arith-
metic aggregation functions on the partitions think of
SQL’s “GROUP BY” functionality as a canonical pat-
tern1. Subsequently the data typically needs to be visu-
alized for users to relate it to their task at hand.

The primary challenge we address in this chapter is
to make large-scale grouping/aggregation queries run at
interactive speeds—even in cases where it is not feasible
to iterate through all the data associated with the query.

How do we make a query run in less time than it
takes to look at the data? There is really only one an-
swer: we answer the query without looking at (all) the
data. Two variants of this idea emerge:

Precomputation: If we know something about the
query workload in advance, we can distill the data in
various ways to allow us to support quick answers (ei-
ther accurate or approximate) to certain queries. The
simplest version of this idea is to precompute the an-
swers to a set of queries, and only support those queries.
We discuss more sophisticated answers below. Sam-
pling: If we cannot anticipate the queries well in ad-
vance, our only choice is to look at a subset of the data
at query time. This amounts to sampling from the data,
and approximating the true answer based on the sample.

The papers in this section focus on one or both of
these approaches.

Our first two papers address what the database

1Database-savvy folks take GROUP BY and aggregation for granted. In statistical programming packages (e.g., R’s plyr library, or Python’s
pandas), this is apparently a relatively new issue, referred to as the “Split-Apply-Combine Strategy”. A wrinkle in that context is the need to support
both array and table notation.

25

Readings in Database Systems, 5th Edition (2015)

community dubbed “data cubes” [DataCubes]. Data
cubes were originally supported by standalone
query/visualization tools called On Line Analytic Pro-
cessing (OLAP) systems. The name is due to relational
pioneer Ted Codd, who was hired as a consultant to
promote an early OLAP vendor called Essbase (subse-
quently bought by Oracle). This was not one of Codd’s
more scholarly endeavors.

Early OLAP tools used a pure “precomputation” ap-
proach. They ingested a table, and computed and stored
the answers to a family of GROUP BY queries over that
table: each query grouped on a different subset of the
columns, and computed summary aggregates over the
non-grouped numerical columns. For example, in a ta-
ble of car sales, it might show total sales by Make, total
sales by Model, total sales by Region, and total sales by
combinations of any 2 or 3 of those attributes. A graph-
ical user interface allowed users to navigate the result-
ing space of group-by queries interactivelythis space of
queries is what became known as a data cube2. Origi-
nally, OLAP systems were pitched as standalone “Mul-
tidimensional Databases” that were fundamentally dif-
ferent than relational databases. However, Jim Gray
and a consortium of authors in the relational industry
explained how the notion of a data cube can fit in the
relational context [68], and the concept subsequently
migrated into the SQL standard as a single query con-
struct: “CUBE BY”. There is also a standard alterna-
tive to SQL called MDX that is less verbose for OLAP
purposes. Some of the terminology from data cubes
has become common parlance—in particular, the idea of
“drilling down” into details and “rolling up” to coarser
summaries.

A naive relational precomputation approach for pre-
computing a full data cube does not scale well. For a ta-
ble with k potential grouping columns, such an approach
would have to run and store the results for 2k GROUP
BY queries, one for each subset of the columns. Each
query would require a full pass of the table.

Our first paper by Harinarayan, Rajaraman and Ull-
man reduces this space: it chooses a judicious subset of
queries in the cube that are worthy of precomputation;
it then uses the results of those queries to compute the
results to any other query in the cube. This paper is one
of the most-cited papers in the area, in part because it
was early in observing that the structure of the data cube

problem is a set-containment lattice. This lattice struc-
ture underlies their solution, and recurs in many other
papers on data cubes (including our next paper), as well
as on certain data mining algorithms like Association
Rules (a.k.a. Frequent Itemsets) [7]. Everyone working
in the OLAP space should have read this paper.

Our second paper by Zhao, Deshpande and
Naughton focuses on the actual computation of results
in the cube. The paper uses an “array-based” approach:
that is, it assumes the data is stored in an Essbase-
like sparse array structure, rather than a relational table
structure, and presents a very fast algorithm that exploits
that structure. However, it makes the surprising obser-
vation that even for relational tables, it is worthwhile to
convert tables to arrays in order to run this algorithm,
rather than to run a (far less efficient) traditional rela-
tional algorithm. This substantially widens the design
space for query engines. The implication is that you
can decouple your data model from the internal model
of your query engine. So a special-purpose “engine”
(Multidimensional OLAP in this case) may add value
by being embedded in a more general-purpose engine
(Relational in this case). Some years after the OLAP
wars, Stonebraker started arguing that “one size doesn’t
fit all” for database engines, and hence that specialized
database engines (not unlike Essbase) are indeed impor-
tant [149]. This paper is an example of how that line
of reasoning sometimes plays out: clever specialized
techniques get developed, and if they’re good enough
they can pay off in more general contexts as well. In-
novating on both sides of that line—specialization and
generalization—has led to good research results over
the years. Meanwhile, anyone building a query engine
should keep in mind the possibility that the internal rep-
resentations of data and operations can be a superset of
the representations of the API.

Related to this issue is the fact that analytic
databases have become much more efficient in the last
decade due to in-database compression, and the march
of Moore’s Law. Stonebraker has asserted to me that
column stores make OLAP accelerators irrelevant. This
is an interesting argument to consider, though hasn’t
been validated by the market. Vendors still build cub-
ing engines, and BI tools commonly implement them as
accelerators on top of relational databases and Hadoop.
Certainly the caching techniques of our first paper re-
main relevant. But the live query processing tradeoffs

2Note that this idea did not originate in databases. In statistics, and later in spreadsheets, there is an old, well-known idea of a contingency table
or cross tabulation (crosstab).

26

Readings in Database Systems, 5th Edition (2015)

between high-performance analytic database techniques
and data cubing techniques may deserve a revisit.

Our third paper on “online aggregation” starts ex-
ploring from the opposite side of the territory from
OLAP, attempting to handle ad-hoc queries quickly
without precomputation by producing incrementally re-
fining approximate answers. The paper was inspired
by the kind of triage that people perform every day in
gathering evidence to make decisions; rather than pre-
specifying hard deadlines, we often make qualitative de-
cisions about when to stop evaluating and to act. Spe-
cific data-centric examples include the “early returns”
provided in election coverage, or the multiresolution de-
livery of images over low-bandwidth connectionsin both
cases we have a good enough sense of what is likely to
happen long before the process completed.

Online aggregation typically makes use of sampling
to achieve incrementally refining results. This is not the
first (or last!) use of database sampling to provide ap-
proximate query answers. (Frank Olken’s thesis [122] is
a good early required reference for database sampling.)
But online aggregation helped kick off an ongoing se-
quence of work on approximate query processing that
has persisted over time, and is of particular interest in
the current era of Big Data and structure-on-use.

We include the first paper on online aggregation
here. To appreciate the paper, it’s important to remem-
ber that databases at the time had long operated under
a mythology of “correctness” that is a bit hard to ap-
preciate in today’s research environment. Up until ap-
proximately the 21st century, computers were viewed by
the general populace—and the business community—as
engines of accurate, deterministic calculation. Phrases
like “Garbage In, Garbage Out” were invented to re-
mind users to put “correct” data into the computer, so it
could do its job and produce “correct” outputs. In gen-
eral, computers weren’t expected to produce “sloppy”
approximate results.

So the first battle being fought in this paper is the
idea that the complete accuracy in large-scale analytics
queries is unimportant, and that users should be able to
balance accuracy and running time in a flexible way.
This line of thinking quickly leads to three research
directions that need to work in harmony: fast query
processing, statistical approximation, and user interface
design. The inter-dependencies of these three themes
make for an interesting design space that researchers and

products are still exploring today.

The initial paper we include here explores how to
embed this functionality in a traditional DBMS. It also
provides statistical estimators for standard SQL aggre-
gates over samples, and shows how stratified sampling
can be achieved using standard B-trees via “index strid-
ing”, to enable different groups in a GROUP BY query
to be sampled at different rates. Subsequent papers in
the area have explored integrating online aggregation
with many of the other standard issues in query pro-
cessing, many of which are surprisingly tricky: joins,
parallelism, subqueries, and more recently the specifics
of recent Big Data systems like MapReduce and Spark.

Both IBM and Informix pursued commercial efforts
for online aggregation in the late 1990s, and Microsoft
also had a research agenda in approximate query pro-
cessing as well. None of these efforts came to mar-
ket. One reason for this at the time was the hidebound
idea that “database customers won’t tolerate wrong an-
swers”3. A more compelling reason related to the cou-
pling of user interface with query engine and approx-
imation. At that time, many of the BI vendors were
independent of the database vendors. As a result, the
database vendors didn’t “own” the end-user experience
in general, and could not deliver the online aggregation
functionality directly to users via standard APIs. For
example, traditional query cursor APIs do not allow for
multiple approximations of the same query, nor do they
support confidence intervals associated with aggregate
columns. The way the market was structured at the
time did not support aggressive new technology span-
ning both the back-end and front-end.

Many of these factors have changed today, and on-
line aggregation is getting a fresh look in research and in
industry. The first motivation, not surprisingly, is the in-
terest in Big Data. Big Data is not only large in volume,
but also has wide “variety” of formats and uses which
means that it may not be parsed and understood until
users want to analyze. For exploratory analytics on Big
Data, the combination of large volumes and schema-on-
use makes precomputation unattractive or impossible.
But sampling on-the-fly remains cheap and useful.

In addition, the structure of the industry and its in-
terfaces has changed since the 1990s. From the bot-
tom up, query engine standards today often emerge and
evolve through open source development, and the win-
ning projects (e.g., Hadoop and Spark) become close

3This was particularly ironic given that the sampling support provided by some of the vendors was biased (by sampling blocks instead of tuples).

27

Readings in Database Systems, 5th Edition (2015)

enough to monopolies that their APIs can dictate client
design. At the same time from the top down, hosted data
visualization products in the cloud are often vertically
integrated: the front-end experience is the primary con-
cern, and is driven by a (often special-purpose) back-end
implementation without concern for standardization. In
both cases, it’s possible to deliver a unique feature like
online aggregation through the stack from engine to ap-
plications.

In that context we present one of the more widely-
read recent papers in the area, on BlinkDB. The sys-
tem makes use of what Olken calls “materialized sample
views”: precomputed samples over base tables, stored
to speed up approximate query answering. Like the
early OLAP papers, BlinkDB makes the case that only
a few GROUP BY clauses need to be precomputed to
get good performance on (stable) workloads. Similar
arguments are made by the authors of the early AQUA
project on approximate queries [5], but they focused on
precomputed synopses (“sketches”) rather than materi-
alized sample views as their underlying approximation
mechanism. The BlinkDB paper also makes the case for
stratification in its views to capture small groups, rem-
iniscent of the Index Striding in the online aggregation
paper. BlinkDB has received interest in industry, and the
Spark team has recently proposed augmenting its pre-
computed samples with sampling on the fly—a sensible
mixture of techniques to achieve online aggregation as
efficiently as possible. Recent commercial BI tools like

ZoomData seem to use online aggregation as well (they
call it “query sharpening”).

With all this discussion of online aggregation, it’s
worth taking a snapshot of current market realities. In
the 25 years since it was widely introduced, OLAP-style
precomputation has underpinned what is now a multi-
billion dollar BI industry. By contrast, approximation
at the user interface is practically non-existent. So for
those of you keeping score at home based on revenue
generation, the simple solution of precomputation is the
current winner by a mile. It’s still an open question
when and if approximation will become a bread-and-
butter technique in practice. At a technical level, the
fundamental benefits of sampling seem inevitably use-
ful, and the technology trends around data growth and
exploratory analytics make it compelling in the Big Data
market. But today this is still a technology that is before
its time.

A final algorithmic note: approximate queries via
sketches are in fact very widely used by engineers and
data scientists in the field today as building blocks
for analysis. Outside of the systems work covered
here, well-read database students should be familiar
with techniques like CountMin sketches, HyperLogLog
sketches, Bloom filters, and so on. A comprehensive
survey of the field can be found in [44]; implementa-
tions of various sketches can be found in a number of
languages online, including as user-defined functions in
the MADlib library mentioned in Chapter 11.

28

Readings in Database Systems, 5th Edition (2015)

Chapter 9: Languages
Introduced by Joe Hellerstein

Selected Readings:

Joachim W. Schmidt. Some High Level Language Constructs for Data of Type Relation. ACM Transactions on
Database Systems, 2(3), 1977, 247-261.

Arvind Arasu, Shivnath Babu, Jennifer Widom. The CQL Continuous Query Language: Semantic Foundations
and Query Execution. The VLDB Journal, 15(2), 2006, 121-142.

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak. Consistency Analysis in Bloom: A
CALM and Collected Approach. CIDR, 2011.

From reading database papers, you might expect
that typical database users are data analysts, business
decision-makers or IT staff. In practice, the major-
ity of database users are software engineers, who build
database-backed applications that are used further up the
stack. Although SQL was originally designed with non-
technical users in mind, it is rare for people to interact
directly with a database via a language like SQL unless
they are coding up a database-backed application.

So if database systems are mostly just APIs for soft-
ware development, what do they offer programmers?
Like most good software, database systems offer pow-
erful abstractions. Two stand out:

Two stand out:

1. The transaction model gives programmers the ab-
straction of a single-process, sequential machine
that never fails mid-task. This protects program-
mers from a gigantic cliff of complexity—namely,
the innate parallelism of modern computing. A
single compute rack today has thousands of cores
running in parallel across dozens of machines that
can fail independently. Yet application program-
mers can still blithely write sequential code as if it
were 1965 and they were loading a deck of punch-
cards into a mainframe to be executed individu-
ally from start to finish.

2. Declarative query languages like SQL provide
programmers with abstractions for manipulating
sets of data. Famously, declarative languages
shield programmers from thinking about how to
access data items, and instead let them focus
on what data items to return. This data inde-
pendence also shields application programmers

from changes in the organization of underlying
databases, and shields database administrators
from getting involved in the design and mainte-
nance of applications.

Just how useful have these abstractions been over
time? How useful are they today?

1. As a programming construct, serializable trans-
actions have been very influential. It is easy
for programmers to bracket their code with BE-
GIN and COMMIT/ROLLBACK. Unfortunately,
as we discussed in Chapter 6, transactions are ex-
pensive, and are often compromised. “Relaxed”
transactional semantics break the serial abstrac-
tion for users and expose application logic to the
potential for races and/or unpredictable excep-
tions. If application developers want to account
for this, they have to manage the complexity of
concurrency, failure, and distributed state. A com-
mon response to the lack of transactions is to as-
pire to “eventual consistency” [154], as we dis-
cuss in the weak isolation section. But as we dis-
cussed in Chapter 6, this still shifts all the correct-
ness burdens to the application developer. In my
opinion, this situation represents a major crisis in
modern software development.

2. Declarative query languages have also been a
success—certainly an improvement over the navi-
gational languages that preceded them, which led
to spaghetti code that needed to be rewritten ev-
ery time you reorganized the database. Unfortu-
nately, query languages are quite different from
the imperative languages that programmers usu-
ally use. Query languages consume and pro-

29

Readings in Database Systems, 5th Edition (2015)

duce simple unordered “collection types” (sets,
relations, streams); programming languages typ-
ically carry out ordered execution of instruc-
tions, often over complex structured data types
(trees, hashtables, etc.). Programmers of database
applications are forced to bridge this so-called
“impedance mismatch” between programs and
database queries. This has been a hassle for
database programmers since the earliest days of
relational databases.

Database Language Embeddings: Pascal/R
The first paper in this section presents a classical ex-

ample of tackling the second problem: helping imper-
ative programmers with the impedance mismatch. The
paper begins by defining operations for what we might
now recognize (40-odd years later!) as familiar collec-
tion types: the “dictionary” type in Python, the “map”
type in Java or Ruby, etc. The paper then patiently
takes us through the possibilities and pitfalls of various
language constructs that seem to recur in applications
across the decades. A key theme is a desire for differen-
tiating between enumeration (for generating output) and
quantification (for checking properties)—the latter can
often be optimized if you are explicit. In the end, the
paper proposes a declarative, SQL-like sublanguage for
Relation types that is embedded into Pascal. The result
is relatively natural and not unlike some of the better
interfaces today.

Although this approach seems natural now, the topic
took decades to gain popular attention. Along the way,
database “connectivity” APIs like ODBC and JDBC
arose as a crutch for C/C++ and Java—they allowed
users to push queries to the DBMS and iterate through
results, but the type systems remained separate, and
bridging from SQL types to host language types was
unpleasant. Perhaps the best modern evolution of ideas
like Pascal/R is Microsoft’s LINQ library, which pro-
vides language-embedded collection types and func-
tions so application developers can write query-like
code over a variety of backend databases and other col-
lections (XML documents, spreadsheets, etc.) We in-
cluded a taste of LINQ syntax in the DryadLINQ paper
in Chapter 5.

In the 2000’s, web applications like social media,
online forums, interactive chat, photo sharing and prod-
uct catalogs were implemented and reimplemented over
relational database backends. Modern scripting lan-

guages for web programming were a bit more conve-
nient than Pascal, and typically included decent col-
lection types. In that environment, application devel-
opers eventually saw recognized patterns in their code
and codified them into what are now called Object-
Relational Mappings (ORMs). Ruby on Rails was one
of the most influential ORMs to begin with, though
by now there are many others. Every popular applica-
tion programming language has at least one, and there
are variations in features and philosophy. The inter-
ested reader is referred to Wikipedia’s “List of object-
relational mapping software” wiki.

ORMs do a few handy things for the web program-
mer. First they provide language-native primitives for
working with collections much like Pascal/R. Second
they can enable updates to in-memory language ob-
jects to be transparently reflected in the database-backed
state. They often offer some language-native syntax for
familiar database design concepts like entities, relation-
ships, keys and foreign keys. Finally, some ORMs in-
cluding Rails offer nice tools for tracking the way that
database schemas evolve over time to reflect changes
in the application code (“migrations” in Rails terminol-
ogy).

This is an area where the database research com-
munity and industry should pay more attention: these
are our users! There are some surprising—and oc-
casionally disconcerting—disconnects between ORMs
and databases [19]. The author of Rails, for example, is
a colorful character named David Heinemeier Hansson
(“DHH”) who believes in “opinionated software” (that
reflects his opinions, of course). He was quoted saying
the following:

I don’t want my database to be clever! ...I
consider stored procedures and constraints
vile and reckless destroyers of coherence.
No, Mr. Database, you can not have my
business logic. Your procedural ambitions
will bear no fruit and you’ll have to pry that
logic from my dead, cold object-oriented
hands . . . I want a single layer of clev-
erness: My domain model.

This unwillingness to trust the DBMS leads to many
problems in Rails applications. Applications written
against ORMs are often very slow—the ORMs them-
selves don’t do much to optimize the way that queries
are generated. Instead, Rails programmers often need

30

Readings in Database Systems, 5th Edition (2015)

to learn to program “differently” to encourage Rails to
generate efficient SQL—similar to the discussion in the
Pascal/R paper, they need to learn to avoid looping and
table-at-a-time iteration. A typical evolution in a Rails
app is to write it naively, observe slow performance,
study the SQL logs it generates, and rewrite the app
to convince the ORM to generate “better” SQL. Recent
work by Cheung and colleagues explores the idea that
program synthesis techniques can automatically gener-
ate these optimizations [38]; it’s an interesting direction,
and time will tell how much complexity it can automate
away. The separation between database and applications
can also have negative effects for correctness. For ex-
ample, Bailis recently showed [19] how a host of ex-
isting open-source Rails applications are susceptible to
integrity violations due to improper enforcement within
the application (instead of the database).

Despite some blind spots, ORMs have generally
been an important practical leap forward in programma-
bility of database-backed applications, and a validation
of ideas that go back as far as Pascal/R. Some good ideas
take time to catch on.

Stream Queries: CQL
Our second paper on CQL is a different flavor of

language work—it’s a query language design paper. It
presents the design of a new declarative query language
for a data model of streams. The paper is interesting
for a few reasons. First, it is a clean, readable, and
relatively modern example of query language design.
Every few years a group of people emerges with yet
another data model and query language: examples in-
clude Objects and OQL, XML and XQuery, or RDF and
SPARQL. Most of these exercises begin with an asser-
tion that “X changes everything” for some data model
X, leading to the presentation of a new query language
that often seems familiar and yet strangely different than
SQL. CQL is a refreshing example of language design
because it does the opposite: it highlights that fact that
streaming data, viewed through the right lens, actually
changes very little. CQL evolves SQL just enough to
isolate the key distinctions between querying “resting”
tables and “moving” streams. This leaves us with a crisp
understanding of what’s really different, semantically,
when you have to talk about streams; many other cur-
rent streaming languages are quite a bit more ad hoc and
messy than CQL.

In addition to this paper being a nice exemplar of

thoughtful query language design, it also represents a re-
search area that received a lot of attention in the database
literature, and remains intriguing in practice. The first
generation of streaming data research systems from the
early 2000’s [3, 120, 118, 36] did not have major up-
take either as open source or in the variety of startups
that grew out of those systems. However the topic of
stream queries has been gaining interest again in indus-
try in recent years, with open source systems like Spark-
Streaming, Storm and Heron seeing uptake, and compa-
nies like Google espousing the importance of continu-
ous dataflow as a new reality of modern services [8].
We may yet see stream query systems occupy more than
their current small niche in financial services.

Another reason CQL is interesting is that streams
are something of a middle ground between databases
and “events”. Databases store and retrieve collection
types; event systems transmit and handle discrete events.
Once you view your events as data, then event program-
ming and stream programming look quite similar. Given
that event programming is a widely-used programming
model in certain domains (e.g. Javascript for user in-
terfaces, Erlang for distributed systems), there should
be a relatively small impedance mismatch between an
event programming language like Javascript and a data
stream system. An interesting example of this approach
is the Rx (Reactive extensions) language, which is a
streaming addition to LINQ that makes programming
event streams feel like writing functional query plans;
or as its author Erik Meijer puts it, “your mouse is a
database” [114].

Programming Correct Applications without
Transactions: Bloom

The third paper on Bloom connects to a number of
the points above; it has a relational model of state at the
application level, and a notion of network channels that
relates to CQL streams. But the primary goal is to help
programmers manage the loss of the first abstraction at
the beginning of this chapter introduction; the one I de-
scribed as a major crisis. A big question for modern
developers is this: can you find a correct distributed im-
plementation for your program without using transac-
tions or other other expensive schemes to control orders
of operation?

Bloom’s answer to this question is to give pro-
grammers a “disorderly” programming language: one
that discourages them from accidentally using ordering.

31

Readings in Database Systems, 5th Edition (2015)

Bloom’s default data structures are relations; its basic
programming constructs are logical rules that can run
in any order. In short, it’s a general-purpose language
that is similar to a relational query language. For the
same reason that SQL queries can be optimized and par-
allelized without changing output, simple Bloom pro-
grams have a well-defined (consistent) result indepen-
dent of the order of execution. The exception to this
intuition comes with lines of Bloom code that are “non-
monotonic”, testing for a property that can oscillate be-
tween true and false as time passes (e.g. “NOT EXISTS
x” or “HAVING COUNT() = x”.) These rules are sensi-
tive to execution and message ordering, and need to be
“protected” by coordination mechanisms.

The CALM theorem formalizes this notion, answer-
ing the question above definitively: you can find a
consistent, distributed, coordination-free implementa-
tion for your program if and only if its specification is
monotonic [84, 14]. The Bloom paper also illustrates
how a compiler can use CALM in practice to pinpoint
the need for coordination in Bloom programs. CALM
analysis can also be applied to data stream languages in
systems like Storm with the help of programmer anno-
tations [12]. A survey of the theoretical results in this
area is given in [13].

There has been a flurry of related language work
on avoiding coordination: a number of papers pro-
pose using associative, commutative, idempotent opera-
tions [83, 142, 42]; these are inherently monotonic. An-
other set of work examines alternative correctness crite-
ria, e.g., ensuring only specific invariants over database

state [20] or using alternative program analysis to de-
liver serializable outcomes without impelementing tra-
ditional read-write concurrency [137]. The area is still
new; papers have different models (e.g. some with
transactional boundaries and some not) and often don’t
agree on definitions of “consistency” or “coordination”.
(CALM defines consistency in terms of globally de-
terministic outcomes, coordination as messaging that
is required regardless of data partitioning or replica-
tion [14].) It’s important to get more clarity and ideas
here—if programmers can’t have transactions then they
need help at the app-development layer.

Bloom also serves as an example of a recurring
theme in database research: general-purpose declara-
tive languages (a.k.a. “logic programming”). Datalog
is the standard example, and has a long and controver-
sial history in database research. A favorite topic of
database theoreticians in the 1980’s, Datalog met fe-
rocious backlash from systems researchers of the day
as being irrelevant in practice [152]. More recently it
has gotten some attention from (younger) researchers in
databases and other applied fields [74]—for example,
Nicira’s software-defined networking stack (acquired by
VMWare for a cool billion dollars) uses a Datalog lan-
guage for network forwarding state [97]. There is a
spectrum between using declarative sublanguages for
accessing database state, and very aggressive uses of
declarative programming like Bloom for specifying ap-
plication logic. Time will tell how this declarative-
imperative boundary shifts for programmers in vari-
ous contexts, including infrastructure, applications, web
clients and mobile devices.

32

Readings in Database Systems, 5th Edition (2015)

Chapter 10: Web Data
Introduced by Peter Bailis

Selected Readings:

Sergey Brin and Larry Page. The Anatomy of a Large-scale Hypertextual Web Search Engine. WWW, 1998.

Eric A. Brewer. Combining Systems and Databases: A Search Engine Retrospective. Readings in Database
Systems, Fourth Edition, 2005.

Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, Yang Zhang. WebTables: Exploring the Power
of Tables on the Web. VLDB, 2008.

Since the previous edition of this collection, the
World Wide Web has unequivocally laid any linger-
ing questions regarding its longevity and global impact
to rest. Several multi-Billion-user services including
Google and Facebook have become central to modern
life in the first world, while Internet- and Web-related
technology has permeated both business and personal
interactions. The Web is undoubtedly here to stayat least
for the foreseeable future.

Web data systems bring a new set of challenges, in-
cluding high scale, data heterogeneity, and a complex
and evolving set of user interaction modes. Classical re-
lational database system designs did not have the Web
workload in mind, and are not the technology of choice
in this context. Rather, Web data management requires
a melange of techniques spanning information retrieval,
database internals, data integration, and distributed sys-
tems. In this section, we include three papers that high-
light technical solutions to problems inherent in Web
data management.

Our first two papers describe the internals of search
engine and indexing technology. Our first paper, from
Larry Page and Sergey Brin, Google co-founders, de-
scribes the internals of an early prototype of Google.
The paper is interesting both from a historical perspec-
tive as well as a technical one. The first Web indices,
such as Yahoo!, consisted of human-curated ”directo-
ries”. While directory curation proved useful, directo-
ries were difficult to scale and required considerable hu-
man power to maintain. As a result, a number of search
engines, including Google but also Inktomi, co-created
by Eric Brewer, author of the second paper, sought auto-
mated approaches. The design of these engines is con-
ceptually straightforward: a set of crawlers downloads
copies of web data and builds (and maintains) read-only

indices that are used to compute a relevance scoring
function. Queries, in turn, are serviced by a front-end
web service that reads from the indices and presents an
ordered set of results, ranked by scoring function.

The implementation and realization of these engines
is complex. For example, scoring algorithms are highly
tuned, and their implementation is considered a trade se-
cret even within search engines today: Web authors have
a large incentive to manipulate the scoring function to
their advantage. The PageRank algorithm described in
the Google paper (and detailed in [126]) is an famous
example of a scoring function, and measures the ”influ-
ence” of each page measured according to the hyper-
link graph. Both papers describe how a combination of
mostly unspecified attributes is used for scoring in prac-
tice, including ”anchor text” (providing context on the
source of a link) and other forms of metadata. The al-
gorithmic foundations of these techniques, such as key-
word indexing date, date to the 1950s [107], while oth-
ers, such as TFxIDF ranking and inverted indices, date
to the 1960s [139]. Many of the key systems innovations
in building Internet search engines came in scaling them
and in handling dirty, heterogenous data sources.

While the high-level details of these papers are help-
ful in understanding how modern search engines oper-
ate, these papers are also interesting for their commen-
tary on the process of building a production Web search
engine. A central message in each is that Web services
must account for variety; the Google authors describe
how assumptions made in typical information retrieval
techniques may no longer hold in a Web context (e.g.,
the ”Bill Clinton sucks” web page). Web sources change
at varying rates, necessitating prioritized crawling for
maintaining fresh indices. Brewer also highlights the
importance of fault tolerance and availability of opera-

33

Readings in Database Systems, 5th Edition (2015)

tion, echoing his experience in the field building Inktomi
(which also led to the development of concepts includ-
ing harvest and yield [31] and the CAP Theorem; see
Chapter 7). Brewer outlines the difficulty in building a
search engine using commodity database engines (e.g.,
Informix was 10x slower than Inktomi’s custom solu-
tion). However, he notes that the principles of database
system design, including ”top-down” design, data inde-
pendence, and a declarative query engine, are valuable
in this context—if appropriately adapted.

Today, Web search engines are considered mature
technology. However, competing services continually
improve search experience by adding additional func-
tionality. Today’s search engines are much more than
information retrieval engines for textual data web pages;
the content of the first two papers is a small subset of the
internals of a service like Google or Baidu. These ser-
vices provide a range of functionality, including targeted
advertisement, image search, navigation, shopping, and
mobile search. There is undoubtedly bleed-over in re-
trieval, entity resolution, and indexing techniques be-
tween these domains, but each requires domain-specific
adaptation.

As an example of a new type of search enabled by
massive Web data, we include a paper from the WebTa-
bles project led by Alon Halevy at Google. WebTa-
bles allows users to query and understand relationships
between data stored in HTML tables. HTML tables
are inherently varied in structure due to a lack of fixed
schema. However, aggregating enough of them at Web
scale and performing some lightweight automated data
integration enables some interesting queries (e.g., a table
of influenza outbreak locations can be combined with
a table containing data about city populations). Min-
ing the schema of these tables, determining their struc-
ture and veracity (e.g., only 1% of the tables in the pa-
per corpus were, in fact, relations), and efficiently in-
ferring their relationships is difficult. The paper we
have included describes techniques for building an at-
tribute correlation statistics database (AcsDB) to answer
queries about the table metadata, enabling novel func-
tionality including schema auto-complete. The WebTa-

bles project continues today in various forms, including
Google Table Search and integration with Google’s core
search technology; an update on the project can be found
in [24]. The ability to produce structured search results
is desirable in several non-traditional domains, includ-
ing mobile, contextual, and audio-based search.

The WebTables paper in particular highlights the
power of working with Web data at scale. In a 2009
article, Halevy and colleagues describe the ”Unreason-
able Effectiveness of Data,” effectively arguing that,
with sufficient amount of data, enough latent structure
is captured to make modeling simpler: relatively simple
data mining techniques often beat more mathematically
sophisticated statistical models [79]. This argument
stresses the potential for unlocking hidden structure by
sheer volume of data and computation, whether mining
schema correlations or performing machine translation
between languages. With a big enough haystack, nee-
dles become large. Even examining 1% of the tables
in the web corpus, the VLDB 2009 paper studies 154M
distinct relations, a corpus that was ”five orders of mag-
nitude larger than the largest one [previously] consid-
ered.”

The barrier for performing analysis of massive
datasets and system architectures outside of these com-
panies is decreasing, due to cheap commodity storage
and cloud computing resources. However, it is difficult
to replicate the feedback loop between users (e.g., spam-
mers) and algorithms (e.g., search ranking algorithms).
Internet companies are uniquely positioned to pioneer
systems designs that account for this feedback loop. As
database technologies power additional interactive do-
mains, we believe this paradigm will become even more
important. That is, the database market and interest-
ing database workloads may benefit from similar anal-
yses. For example, it would be interesting to perform
a similar analysis on hosted database platforms such as
Amazon Redshift and Microsoft SQL Azure, enabling
a variety of functionality including index auto-tuning,
adaptive query optimization, schema discovery from un-
structured data, query autocomplete, and visualization
recommendations.

34

Readings in Database Systems, 5th Edition (2015)

Chapter 11: A Biased Take on a Moving Target: Complex Analytics
by Michael Stonebraker

In the past 5-10 years, new analytic workloads have
emerged that are more complex than the typical business
intelligence (BI) use case. For example, internet adver-
tisers might want to know “How do women who bought
an Apple computer in the last four days differ statisti-
cally from women who purchased a Ford pickup truck
in the same time period?” The next question might be:
“Among all our ads, which one is the most profitable to
show to the female Ford buyers based on their click-
through likelihood?” These are the questions asked
by today’s data scientists, and represent a very differ-
ent use case from the traditional SQL analytics run by
business intelligence specialists. It is widely assumed
that data science will completely replace business intel-
ligence over the next decade or two, since it represents a
more sophisticated approach to mining data warehouses
for new insights. As such, this document focuses on the
needs of data scientists.

I will start this section with a description of what I
see as the job description of a data scientist. After clean-
ing and wrangling his data, which currently consumes
the vast majority of his time and which is discussed in
the section on data integration, he generally performs
the following iteration:

Until (tired) {
Data management operation(s);

Analytic operation(s);

}
In other words, he has an iterative discovery process,

whereby he isolates a data set of interest and then per-
forms some analytic operation on it. This often sug-
gests either a different data set to try the same analytic
on or a different analytic on the same data set. By and
large what distinguishes data science from business in-
telligence is that the analytics are predictive modeling,
machine learning, regressions, ... and not SQL analytics.

In general, there is a pipeline of computations that
constitutes the analytics. For example, Tamr has a mod-
ule which performs entity consolidation (deduplication)
on a collection of records, say N of them, at scale. To
avoid the N ** 2 complexity of brute force algorithms,
Tamr identifies a collection of “features”, divides them
into ranges that are unlikely to co-occur, computes (per-
haps multiple) “bins” for each record based on these

ranges, reshuffles the data in parallel so it is partitioned
by bin number, deduplicates each bin, merges the re-
sults, and finally constructs composite records out of the
various clusters of duplicates. This pipeline is partly
SQL-oriented (partitioning) and partly array-oriented
analytics. Tamr seems to be typical of data science
workloads in that it is a pipeline with half a dozen steps.

Some analytic pipelines are “one-shots” which are
run once on a batch of records. However, most pro-
duction applications are incremental in nature. For ex-
ample, Tamr is run on an initial batch of input records
and then periodically a new “delta” must be processed
as new or changed input records arrive. There are two
approaches to incremental operation. If deltas are pro-
cessed as “mini batches” at periodic intervals of (say)
one day, one can add the next delta to the previously
processed batch and rerun the entire pipeline on all the
data each time the input changes. Such a strategy will be
very wasteful of computing resources. Instead, we will
focus on the case where incremental algorithms must be
run after an initial batch processing operation. Such in-
cremental algorithms require intermediate states of the
analysis to be saved to persistent storage at each inter-
ation. Although the Tamr pipeline is of length 6 or so,
each step must be saved to persistent storage to support
incremental operation. Since saving state is a data man-
agement operation, this make the analytics pipeline of
length one.

The ultimate “real time” solution is to run incre-
mental analytics continuously services by a stream-
ing platform such as discussed in the section on new
DBMS technology. Depending on the arrival rate of new
records, either solution may be preferred.

Most complex analytics are array-oriented, i.e. they
are a collection of linear algebra operations defined on
arrays. Some analytics are graph oriented, such as social
network analysis. It is clear that arrays can be simulated
on table-based systems and that graphs can be simulated
on either table systems or array systems. As such, later
in this document, we discuss how many different archi-
tectures are needed for this used case.

Some problems deal with dense arrays, which are
ones where almost all cells have a value. For example,
an array of closing stock prices over time for all secu-

35

Readings in Database Systems, 5th Edition (2015)

rities on the NYSE will be dense, since every stock has
a closing price for each trading day. On the other hand,
some problems are sparse. For example, a social net-
working use case represented as a matrix would have a
cell value for every pair of persons that were associated
in some way. Clearly, this matrix will be very sparse.
Analytics on sparse arrays are quite different from ana-
lytics on dense arrays.

In this section we will discuss such workloads at
scale. If one wants to perform such pipelines on “small
data” then any solution will work fine.

The goal of a data science platform is to support
this iterative discovery process. We begin with a sad
truth. Most data science platforms are file-based and
have nothing to do with DBMSs. The preponderance
of analytic codes are run in R, MatLab, SPSS, SAS and
operate on file data. In addition, many Spark users are
reading data from files. An exemplar of this state of af-
fairs is the NERSC high performance computing (HPC)
system at Lawrence Berkeley Labs. This machine is
used essentially exclusively for complex analytics; how-
ever, we were unable to get the Vertica DBMS to run
at all, because of configuration restrictions. In addi-
tion, most “big science” projects build an entire software
stack from the bare metal on up. It is plausible that this
state of affairs will continue, and DBMSs will not be-
come a player in this market. However, there are some
hopeful signs such as the fact that genetic data is start-
ing to be deployed on DBMSs, for example the 1000
Genomes Project [144] is based on SciDB.

In my opinion, file system technology suffers from
several big disadvantages. First metadata (calibration,
time, etc.) is often not captured or is encoded in the
name of the file, and is therefore not searchable. Sec-
ond, sophisticated data processing to do the data man-
agement piece of the data science workload is not avail-
able and must be written (somehow). Third, file data
is difficult to share data among colleagues. I know of
several projects which export their data along with their
parsing program. The recipient may be unable to recom-
pile this accessor program or it generates an error. In the
rest of this discussion, I will assume that data scientists
over time wish to use DBMS technology. Hence, there
will be no further discussion of file-based solutions.

With this backdrop, we show in Table 1 a classifi-
cation of data science platforms. To perform the data
management portion, one needs a DBMS, according to
our assumption above. This DBMS can have one of two

flavors. First, it can be record-oriented as in a relational
row store or a NoSQL engine or column-oriented as in
most data warehouse systems. In these cases, the DBMS
data structure is not focused on the needs of analytics,
which are essentially all array-oriented, so a more natu-
ral choice would be an array DBMS. The latter case has
the advantage that no conversion from a record or col-
umn structure is required to perform analytics. Hence,
an array structure will have an innate advantage in per-
formance. In addition, an array-oriented storage struc-
ture is multi-dimensional in nature, as opposed to table
structures which are usually one-dimensional. Again,
this is likely to result in higher performance.

The second dimension concerns the coupling be-
tween the analytics and the DBMS. On the one hand,
they can be independent, and one can run a query, copy-
ing the result to a different address space where the ana-
lytics are run. At the end of the analytics pipeline (often
of length one), the result can be saved back to persistent
storage. This will result in lots of data churn between
the DBMS and the analytics. On the other hand, one
can run analytics as user-defined functions in the same
address space as the DBMS. Obviously the tight cou-
pling alternative will lower data churn and should result
in superior performance.

In this light, there are four cells, as noted in Table 1.
In the lower left corner, Map-Reduce used to be the ex-
emplar; more recently Spark has eclipsed Map-Reduce
as the platform with the most interest. There is no per-
sistence mechanism in Spark, which depends on Red-
Shift or H-Base, or ... for this purpose. Hence, in Spark
a user runs a query in some DBMS to generate a data
set, which is loaded into Spark, where analytics are per-
formed. The DBMSs supported by Spark are all record
or column-oriented, so a conversion to array representa-
tion is required for the analytics.

A notable example in the lower right hand corner is
MADLIB [85], which is a user-defined function library
supported by the RDBMS Greenplum. Other vendors
have more recently started supporting other alternatives;
for example Vertica supports user-defined functions in
R. In the upper right hand corner are array systems with
built-in analytics such as SciDB [155], TileDB [56] or
Rasdaman [26].

In the rest of this document, we discuss performance
implications. First, one would expect performance to
improve as one moves from lower left to upper right
in Table 1. Second, most complex analytics reduce to

36

Readings in Database Systems, 5th Edition (2015)

Loosely coupled Tightly coupled
Array representation SciDB, TileDB, Rasdaman
Table respresentation Spark + HBase MADLib, Vertica + R

Table 1: A Classification of Data Science Platforms

a small collection of “inner loop” operations, such as
matrix multiply, singular-value decomposition and QR
decomposition. All are computationally intensive, typ-
ically floating point codes. It is accepted by most that
hardware-specific pipelining can make nearly an order
of magnitude difference in performance on these sorts of
codes. As such, libraries such as BLAS, LAPACK, and
ScaLAPACK, which call the hardware-optimized Intel
MKL library, will be wildly faster than codes which
don’t use hardware optimization. Of course, hardware
optimization will make a big difference on dense array
calculations, where the majority of the effort is in float-
ing point computation. It will be less significance on
sparse arrays, where indexing issues may dominate the
computation time.

Third, codes that provide approximate answers are
way faster than ones that produce exact answers. If you
can deal with an approximate answer, then you will save
mountains of time.

Fourth, High Performance Computing (HPC) hard-
ware are generally configured to support large batch
jobs. As such, they are often structured as a compu-
tation server connected to a storage server by network-
ing, whereby a program must pre-allocation disk space
in a computation server cache for its storage needs. This
is obviously at odds with a DBMS, which expects to
be continuously running as a service. Hence, be aware
that you may have trouble with DBMS systems on HPC
environments. An interesting area of exploration is
whether HPC machines can deal with both interactive
and batch workloads simultaneously without sacrificing
performance.

Fifth, scalable data science codes invariably run on
multiple nodes in a computer network and are often
network-bound [55]. In this case, you must pay careful
attention to networking costs and TCP-IP may not be a
good choice. In general MPI is a higher performance
alternative.

Sixth, most analytics codes that we have tested fail
to scale to large data set sizes, either because they run
out of main memory or because they generate tempo-
raries that are too large. Make sure you test any plat-

form you would consider running on the data set sizes
you expect in production!

Seventh, the structure of your analytics pipeline is
crucial. If your pipeline is on length one, then tight cou-
pling is almost certainly a good idea. On the other hand,
if the pipeline is on length 10, loose coupling will per-
form almost as well. In incremental operation, expect
pipelines of length one.

In general, all solutions we know of have scalability
and performance problems. Moreover, most of the ex-
emplars noted above are rapidly moving targets, so per-
formance and scalability will undoubtedly improve. In
summary, it will be interesting to see which cells in Ta-
ble 1 have legs and which ones don’t. The commercial
marketplace will be the ultimate arbitrer!

In my opinion, complex analytics is current in its
“wild west” phase, and we hope that the next edition of
the red book can identify a collection of core seminal
papers. In the meantime, there is substantial research to
be performed. Specifically, we would encourage more
benchmarking in this space in order to identify flaws
in existing platforms and to spur further research and
development, especially benchmarks that look at end-
to-end tasks involving both data management tasks and
analytics. This space is moving fast, so the benchmark
results will likely be transient. That’s probably a good
thing: we’re in a phase where the various projects should
be learning from each other.

There is currently a lot of interest in custom paral-
lel algorithms for core analytics tasks like convex opti-
mization; some of it from the database community. It
will be interesting to see if these algorithms can be in-
corporated into analytic DBMSs, since they don’t typi-
cally follow a traditional dataflow execution style. An
exemplar here is Hogwild! [133], which achieves very
fast performance by allowing lock-free parallelism in
shared memory. Google Downpour [49] and Microsoft’s
Project Adam [39] both adapt this basic idea to a dis-
tributed context for deep learning.

Another area where exploration is warranted is out-
of-memory algorithms. For example, Spark requires
your data structures to fit into the combined amount of

37

Readings in Database Systems, 5th Edition (2015)

main memory present on the machines in your cluster.
Such solutions will be brittle, and will almost certainly
have scalability problems.

Furthermore, an interesting topic is the desirable ap-
proach to graph analytics. One can either build spe-
cial purpose graph analytics, such as GraphX [64] or
GraphLab [105] and connect them to some sort of
DBMS. Alternately, one can simulate such codes with
either array analytics, as espoused in D4M [95] or table
analytics, as suggested in [90]. Again, may the solution
space bloom, and the commercial market place be the
arbiter!

Lastly, many analytics codes use MPI for commu-
nication, whereas DBMSs invariably use TCP-IP. Also,
parallel dense analytic packages, such as ScaLAPACK,
organize data into a block-cyclic organization across
nodes in a computing cluster [40]. I know of no DBMS
that supports block-cyclic partitioning. Removing this
impedance mismatch between analytic packages and
DBMSs is an interesting research area, one that is tar-
geted by the Intel-sponsored ISTC on Big Data [151].

Commentary: Joe Hellerstein
6 December 2015

I have a rather different take on this area than Mike, both
from a business perspective and in terms of research opportu-
nities. At base, I recommend a ”big tent” approach to this area.
DB folk have much to contribute, but we’ll do far better if we
play well with others.

Let’s look at the industry. First off, advanced analytics
of the sort we’re discussing here will not replace BI as Mike
suggests. The BI industry is healthy and growing. More fun-
damentally, as noted statistician John Tukey pointed out in his
foundational work on Exploratory Data Analysis,4 a chart is
often much more valuable than a complex statistical model.
Respect the chart!

That said, the advanced analytics and data science mar-
ket is indeed growing and poised for change. But unlike the
BI market, this is not a category where database technology
currently plays a significant role. The incumbent in this space
is SAS, a company that makes multiple billions of dollars in
revenue each year, and is decidedly not a database company.
When VCs look at companies in this space, they’re looking
for ”the next SAS”. SAS users are not database users. And the
users of open-source alternatives like R are also not database
users. If you assume as Mike does that ”data scientists will
want to use DBMS technology” — particularly a monolithic

”analytic DBMS” — you’re swimming upstream in a strong
current.

For a more natural approach to the advanced analytics
market, ask yourself this: what is a serious threat to SAS?
Who could take a significant bite out of the cash that enter-
prises currently spend there? Here are some starting points to
consider:

1. Open source stats programming: This includes R and
the Python data science ecosystem (NumPy, SciKit-
Learn, iPython Notebook). These solutions don’t cur-
rently don’t scale well, but efforts are underway ag-
gressively to address those limitations. This ecosystem
could evolve more quickly than SAS.

2. Tight couplings to big data platforms. When the
data is big enough, performance requirements may
”drag” users to a new platform — namely a platform
that already hosts the big data in their organization.
Hence the interest in ”DataFrame” interfaces to plat-
forms like Spark/MLLib, PivotalR/MADlib, and Ver-
tica dplyr. Note that the advanced analytics community
is highly biased toward open source. The cloud is also
an interesting platform here, and not one where SAS
has an advantage.

3. Analytic Services. By this I mean interactive online
services that use analytic methods at their core: rec-
ommender systems, real-time fraud detection, predic-
tive equipment maintenance and so on. This space has
aggressive system requirements for response times, re-
quest scaling, fault tolerance and ongoing evolution that
products like SAS don’t address. Today, these services
are largely built with custom code. This doesn’t scale
across industries — most companies can’t recruit devel-
opers that can work at this level. So there is ostensibly
an opportunity here in commoditizing this technology
for the majority of use cases. But it’s early days for
this market — it remains to be seen whether analytics
service platforms can be made simple enough for com-
modity deployment. If the tech evolves, then cloud-
based services may have significant opportunities for
disruption here as well.

On the research front, I think it’s critical to think outside
the database box, and collaborate aggressively. To me this al-
most goes without saying. Nearly every subfield in computing
is working on big data analytics in some fashion, and smart
people from a variety of areas are quickly learning their own
lessons about data and scale. We can have fun playing with
these folks, or we can ignore them to our detriment.

So where can database research have a big impact in this
space? Some possiblities that look good to me include these:

1. New approaches to Scalability. We have successfully
4Tukey, John. Exploratory Data Analysis. Pearson, 1977.

38

Readings in Database Systems, 5th Edition (2015)

shown that parallel dataflow — think MADlib, ML-
lib or the work of Ordonez at Teradata5 — can take
you a long way toward implementing scalable analyt-
ics without doing violence at the system architecture
level. That’s useful to know. Moving forward, can we
do something that is usefully faster and more scalable
than parallel dataflow over partitioned data? Is that nec-
essary? Hogwild! has generated some of the biggest
excitement here; note that it’s work that spans the DB
and ML communities.

2. Distributed infrastructure for analytic services. As
I mentioned above, analytic services are an interest-
ing opportunity for innovation. The system infrastruc-
ture issues on this front are fairly wide open. What
are the main components of architectures for analytics
services? How are they stitched together? What kind
of data consistency is required across the components?
So-called Parameter Servers are a topic of interest right

now, but only address a piece of the puzzle.6 There has
been some initial work on online serving, evolution and
deployment of models.7 I hope there will be more.

3. Analytic lifecycle and metadata management. This
is an area where I agree with Mike. Analytics is often
a people-intensive exercise, involving data exploration
and transformation in addition to core statistical model-
ing. Along the way, a good deal of context needs to be
managed to understand how models and data products
get developed across a range of tools and systems. The
database commmunity has perspectives on this area that
are highly relevant, including workflow management,
data lineage and materialized view maintenance. Vis-
Trails is an example of research in this space that is be-
ing used in practice.8 This is an area of pressing need
in industry as well — especially work that takes into
account the real-world diversity of analytics tools and
systems in the field.

5e.g., Ordonez, C. Integrating K-means clustering with a relational DBMS using SQL. TKDE 18(2) 2006. Also Ordonez, C. Statistical Model
Computation with UDFs. TKDE 22(12), 2010.

6Ho, Q., et al. More effective distributed ML via a stale synchronous parallel parameter server. NIPS 2013.
7Crankshaw, D, et al. The missing piece in complex analytics: Low latency, scalable model management and serving with Velox. CIDR 2015.

See also Schleier-Smith, J. An Architecture for Agile Machine Learning in Real-Time Applications. KDD 2015.
8See http://www.vistrails.org.

39

Readings in Database Systems, 5th Edition (2015)

Chapter 12: A Biased Take on a Moving Target: Data Integration
by Michael Stonebraker

I will start this treatise with a history of two major
themes in data integration. In my opinion, the topic be-
gan with the major retailers in the 1990s consolidating
their sales data into a data warehouse. To do this they
needed to extract data from in-store sales systems, trans-
form it into a predefined common representation (think
of this as a global schema), and then load it into a data
warehouse. This data warehouse kept historical sales
data for a couple of years and was used by the buyers in
the organization to rotate stock. In other words, a buyer
would figure out that pet rocks are “out” and barbie dolls
are “in.” Hence, he would tie up the barbie doll factory
with a big order and move the pet rocks up front and
discount them to get rid of them. A typical retail data
warehouse paid for itself within a year through better
buying and stock rotation decisions. In the late 1990s
and early 2000’s there was a giant “pile on” as essen-
tially all enterprises followed the lead of retailers and
organized their customer-facing data into a data ware-
house.

A new industry was spawned to support the loading
of data warehouses, called extract, transform, and load
(ETL) systems. The basic methodology was:

a) Construct a global schema in advance.

b) Send a programmer out to the owner of each data
source and have him figure out how to do the extrac-
tion. Historically, writing such “connectors” was a lot
of work because of arcane formats. Hopefully, this will
become less problematic in the future with more open
source and standardized formats.

c) Have him write transformations, often in a script-
ing language, and any necessary cleaning routines

d) Have him write a script to load the data into a data
warehouse

It became apparent that this methodology scales to
perhaps a dozen data sources, because of three big is-
sues:

1. A global schema is needed up front. About this
time, there was a push in many enterprises to write
an enterprise-wide schema for all company ob-
jects. A team was charged with doing this and
would work on it for a couple of years. At the
end of this time, their result was two years out of

date, and was declared a failure. Hence, an up-
front global schema is incredibly difficult to con-
struct for a broad domain. This limits the plausi-
ble scope of data warehouses.

2. Too much manual labor. A skilled programmer
is required to perform most of the steps in the
methodology for each data source.

3. Data integration and cleaning is fundamentally
difficult. The typical data warehouse project in
the 1990’s was a factor of two over budget and a
factor of two late. The problem was that planners
underestimated the difficulty of the data integra-
tion challenge. There are two big issues. First,
data is dirty. A rule of thumb is that 10% of your
data is incorrect. This results from using nick-
names for people or products, having stale ad-
dresses for suppliers, having incorrect ages for
people, etc. The second is that deduplication is
hard. One has to decide if Mike Stonebraker and
M.R. Stonebraker are the same entity or different
ones. Equally challenging is two restaurants at the
same address. They might be in a food court, one
might have replaced the other in a stand-alone lo-
cation or this might be a data error. It is expensive
to figure out ground truth in such situations.

In spite of these issues, data warehouses have been
a huge success for customer facing data, and are in
use by most major enterprises. In this use case, the
pain of assembling composite data is justified by the
better decision making that results. I hardly ever hear
enterprises complaining about the operational cost of
their data warehouse. What I hear instead is an inces-
sant desire by business analysts for more data sources,
whether these be public data off the web or other enter-
prise data. For example, the average large enterprise has
about 5000 operational data stores, and only a few are
in the data warehouse.

As a quick example, I visited a major beer manufac-
turer a while ago. He had a typical data warehouse of
sales of his products by brand, by distributor, by time
period, etc. I told the analysts that El Nino was widely
predicted to occur that winter and it would be wetter
than normal on the west coast and warmer than normal

40

Readings in Database Systems, 5th Edition (2015)

in the Northeast. I then asked if beer sales are correlated
to temperature or precipitation. They replied “I wish we
could answer that question, but weather data is not in
our warehouse”. Supporting data source scalability is
very difficult using ETL technology.

Fast forward to the 2000’s, and the new buzzword
is master data management (MDM). The idea behind
MDM is to standardize the enterprise representation of
important entities such as customers, employees, sales,
purchases, suppliers, etc. Then carefully curate a master
data set for each entity type and get everyone in the en-
terprise to use this master. This sometimes goes by the
mantra “golden records”. In effect, the former ETL ven-
dors are now selling MDM, as a broader scope offering.
In my opinion, MDM is way over-hyped.

Let me start with “Who can be against standards?”
Certainly not me. However, MDM has the following
problems, which I will illustrate by vignette.

When I worked for Informix 15 years ago, the new
CEO asked the Human Resources VP at an early staff
meeting “How many employees do we have?” She re-
turned the next week with the answer “I don’t know and
there is no way to find out?” Informix operated in 58
countries, each with its own labor laws, definition of an
employee, etc. There was no golden record for employ-
ees. Hence, the only way to answer the CEOs ques-
tion would be to perform data integration on these 58
data sources to resolve the semantic issues. Getting 58
country managers to agree to do this would be challeng-
ing, made more difficult by the fact that Informix did not
even own all the organizations involved. The new CEO
quickly realized the futility of this exercise.

So why would a company allow this situation to oc-
cur? The answer is simple: business agility. Informix
set up country operations on a regular basis, and wanted
the sales team up and running quickly. Inevitably they
would hire a country manager and tell him to “make it
happen”. Sometimes it was a distributor or other in-
dependent entity. If they had said “here are the MDM
golden records you need to conform to”, then the coun-
try manager or distributor would spend months trying to
reconcile his needs with the MDM system in place. In
other words, MDM is the opposite of business agility.
Obviously every enterprise needs to strike a balance be-
tween standards and agility.

A second vignette concerns a large manufacturing
enterprise. They are decentralized into business units
for business agility reasons. Each business unit has its

own purchasing system to specify the terms and con-
ditions under which the business unit interacts with its
suppliers. There are some 300 of these systems. There
is an obvious return on investment to consolidate these
systems. After all it is less code to maintain and the
enterprise can presumably get better-consolidated terms
than each business unit can individually. So why are
there so many purchasing systems? Acquisitions. This
enterprise grew largely by acquisition. Each acquisition
became a new business unit, and came with its own data
systems, contracts in place, etc. It is often simply not
feasible to merge all these data systems into the par-
ent’s IT infrastructure. In summary, acquisitions screw
up MDM.

So what is entailed in data integration (or data cura-
tion)? It is the following steps:

1. Ingest. A data source must be located and cap-
tured. This requires parsing whatever data struc-
ture is used for storage.

2. Transform. For example, Euros to dollars or air-
port code to city name.

3. Clean. Data errors must be found and rectified.

4. Schema integration. Your wages is my salary.

5. Consolidate (deduplication). Mike Stonebraker
and M.R. Stonebraker must be consolidated into
a single record.

The ETL vendors do this at high cost and with low
scalability. The MDM vendors have a similar profile.
So there is a big unmet need. Data curation at scale is
the “800 pound gorilla in the corner.” So what are the
research challenges in this area?

Let’s go through the steps one by one.

Ingest is simply a matter of parsing data sources.
Others have written such “connectors”, and they are
generally expensive to construct. An interesting chal-
lenge would be to semi-automatically generate connec-
tors.

Data transformations have also been extensively re-
searched, mostly in the last decade or so. Script-
ing/visualization facilities to specify transforms have
been studied in [130, 54]. Data Wrangler [94] appears
to be the state of the art in this area, and the interested
reader is encouraged to take a look. In addition, there
are a bunch of commercial offerings that offer transfor-
mation services for a fee (e.g. address to (lat,long) or

41

Readings in Database Systems, 5th Edition (2015)

company to canonical company representation). In ad-
dition, work on finding transformations of interest from
the public web is reported in [4].

Data cleaning has been studied using a variety of
techniques. [41] applied functional dependencies to
discover erroneous data and suggest automatic repairs.
Outlier detection (which may correspond to errors) has
been studied in many contexts [87]. [162, 158] are
query systems to discover interesting patterns in the
data. Such patterns may correspond to errors. [148]
have studied the utilization of crowd sourcing and expert
sourcing to correct errors, once they have been identi-
fied. Lastly, there are a variety of commercial services
that will clean common domains, such as addresses of
persons and dates. In my opinion, data cleaning research
MUST utilize real-world data. Finding faults that have
been injected into other-wise clean data just is not be-
lievable. Unfortunately, real world “dirty” data is quite
hard to come by.

Schema matching has been extensively worked on
for at least 20 years. The interested reader should con-
sult [117, 77, 134] for the state of the art in this area.

Entity consolidation is a problem of finding records
in a high dimensional space (all of the attributes about
an entity – typically 25 or more) that are close together.
Effectively this is a clustering problem in 25 space. This
is an N ** 2 problem that will have a very long running
time at scale. Hence, approximate algorithms are clearly
the way to proceed here. A survey of techniques appears
in [87].

In my opinion, the real problem is an end-to-end
system. Data curation entails all of these steps, which
must be seamlessly integrated, and enterprise-wide sys-
tems must perform curation at scale. An interesting end-
to-end approach that appears to scale well is the Data
Tamer system [148]. On the other hand, data curation
problems also occur at the department level, where an
individual contributor wants to integrate a handful of
data sources, and the Data Wrangler system noted above
appears to be an interesting approach. There are com-
mercial companies supporting both of these systems, so
regular enhancements should be forthcoming.

Hopefully, the next edition of the Red Book will
have a collection of seminal papers in this area to re-
place this (self-serving) call to action. In my opinion,
this is one of the most important topics that enterprises
are dealing with. My one caution is “the rubber has to
meet the road”. If you want to work in this area, you

have got to try your ideas on real world enterprise data.
Constructing artificial data, injecting faults into it, and
then finding these faults is simply not believable. If
you have ideas in this area, I would recommend building
an end-to-end system. In this way, you make sure that
you are solving an important problem, rather than just a
“point problem” which real world users may or may not
be interested in.

Commentary: Joe Hellerstein
6 December 2015

I agree with Mike’s assessment here in general, but wanted
to add my perspective on the space, relating to the ”department
level” problem he mentions in passing.

Based on experience with users across a wide range of
organizations, we’ve seen that data transformation is increas-
ingly a user-centric task, and depends critically upon the user
experience: the interfaces and languages for interactively as-
sessing and manipulating data.

In many of today’s settings, the right outcome from data
transformation depends heavily on context. To understand if
data is dirty, you have to know what it is ”supposed” to look
like. To transform data for use, you need to understand what it
is being used for. Even in a single organization, the context of
how data is going to be used and what it needs to be like varies
across people and across time. Add this to Mike’s critique of
the idea of a ”golden master”–it simply doesn’t make sense for
many modern use cases, especially in analytical contexts.

Instead, you need to design tools for the people who best
understand the data and the use case, and enable them to do
their own data profiling and transformation in an agile, ex-
ploratory manner. Computer scientists tend to design for tech-
nical users–IT professionals and data scientists. But in most
organizations, the users who understand the data and the con-
text are closer to the ”business” than the IT department. They
are often less technically skilled as well. Rather than reach
for traditional ETL tools, they tend to fall back on manip-
ulating data in spreadsheets and desktop database packages,
neither of which are well suited for assessing data quality or
doing bulk transformation. For large datasets they ”code in
Microsoft Word”: they describe their desired workflow in a
natural language spec, wait for IT to get around to writing the
code for them, and then when they get the results they typi-
cally realize they don’t quite work. At which point their need
for the data has often changed anyhow. No surprise that peo-
ple often assert that 50-80% of their time is spent in ”preparing
the data.” (As a footnote, in my experience modern ”data sci-
entists” tend to wrangle data via ad-hoc scripts in Python, R
or SAS DataStep, and are shockingly lax about code quality

42

Readings in Database Systems, 5th Edition (2015)

and revision control for these scripts. As a result they’re often
worse off over time than the old-school ETL users!)

Business users reach for graphical tools for good reason:
they want to understand the data as it is being transformed,
and assess whether it is getting closer to a form that’s useful
for their business problem. As a result, the unattended algo-
rithms from the database research literature have done too little
to address the key issues in this space. I believe the most rel-
evant solutions will be based on interfaces that enable people
to understand the state of their data intuitively, and collaborate
with algorithms to get the data better purposed for use.

This presents a significant opportunity for innovation.
Data transformation is a perfect Petri Dish for exploring the

general topic of visualizing and interacting with data. This is
an area where ideas from Databases, HCI and Machine Learn-
ing can be brought together, to create interactive collaborations
between algorithms and people that solve practical, context-
specific problems with data. Backing this up we need inter-
active data systems that can do things like provide instanta-
neous data profiles (various aggregates) over the results of ad-
hoc transformation steps, and speculate ahead of users in real
time to suggest multiple alternative transformations that could
be useful.9 Some of the topics from the Interactive Analytics
chapter are relevant here, particularly for big data sets. I’ve
been happy to see more work on visualization and interaction
in the database community in recent years; this is a great ap-
plication area for that work.

9Heer, J., Hellerstein, J.M. and Kandel, S. ”Predictive Interaction for Data Transformation.” CIDR 2015.

43

Readings in Database Systems, 5th Edition (2015)

List of All Readings

Background
Joseph M. Hellerstein and Michael Stonebraker. What Goes Around Comes Around. Readings in Database Systems,
4th Edition (2005).

Joseph M. Hellerstein, Michael Stonebraker, James Hamilton. Architecture of a Database System. Foundations and
Trends in Databases, 1, 2 (2007).

Traditional RDBMS Systems
Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran, Jim Gray, Patricia P. Griffiths,
W. Frank King III, Raymond A. Lorie, Paul R. McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger,
Bradford W. Wade, Vera Watson. System R: Relational Approach to Database Management. ACM Transactions on
Database Systems, 1(2), 1976, 97-137.

Michael Stonebraker and Lawrence A. Rowe. The design of POSTGRES. SIGMOD, 1986.

David J. DeWitt, Shahram Ghandeharizadeh, Donovan Schneider, Allan Bricker, Hui-I Hsiao, Rick Rasmussen. The
Gamma Database Machine Project. IEEE Transactions on Knowledge and Data Engineering, 2(1), 1990, 44-62.

Techniques Everyone Should Know
Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, Thomas G. Price. Access path
selection in a relational database management system. SIGMOD, 1979.

C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, Peter M. Schwarz. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Transactions
on Database Systems, 17(1), 1992, 94-162.

Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, Irving L. Traiger. Granularity of Locks and Degrees of Consis-
tency in a Shared Data Base. , IBM, September, 1975.

Rakesh Agrawal, Michael J. Carey, Miron Livny. Concurrency Control Performance Modeling: Alternatives and
Implications. ACM Transactions on Database Systems, 12(4), 1987, 609-654.

C. Mohan, Bruce G. Lindsay, Ron Obermarck. Transaction Management in the R* Distributed Database Management
System. ACM Transactions on Database Systems, 11(4), 1986, 378-396.

New DBMS Architectures
Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau,
Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, Stan Zdonik. C-store: A Column-
oriented DBMS. SIGMOD, 2005.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike
Zwilling. Hekaton: SQL Server’s Memory-optimized OLTP Engine. SIGMOD, 2013.

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, Michael Stonebraker. OLTP Through the Looking Glass, and
What We Found There. SIGMOD, 2008.

Large-Scale Dataflow Engines
Jeff Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI, 2004.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu. DryadLINQ: A System for General-Purpose Distributed Data-

44

Readings in Database Systems, 5th Edition (2015)

Parallel Computing Using a High-Level Language. OSDI, 2008.

Weak Isolation and Distribution
Atul Adya, Barbara Liskov, and Patrick O’Neil. Generalized Isolation Level Definitions. ICDE, 2000.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-Value
Store. SOSP, 2007.

Eric Brewer. CAP Twelve Years Later: How the ”Rules” Have Changed. IEEE Computer, 45, 2 (2012).

Query Optimization
Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient Search. ICDE,
1993.

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.

Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh, Miso Cilimdzic. Robust Query
Processing Through Progressive Approximation. SIGMOD, 2004.

Interactive Analytics
Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman. Implementing Data Cubes Efficiently. SIGMOD, 1996.

Yihong Zhao, Prasad M. Deshpande, Jeffrey F. Naughton. An Array-Based Algorithm for Simultaneous Multidimen-
sional Aggregates. SIGMOD, 1997.

Joseph M. Hellerstein, Ron Avnur, Vijayshankar Raman. Informix under CONTROL: Online Query Processing. Data
Mining and Knowledge Discovery, 4(4), 2000, 281-314.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, Ion Stoica. BlinkDB: Queries with
Bounded Errors and Bounded Response Times on Very Large Data. EuroSys, 2013.

Languages
Joachim W. Schmidt. Some High Level Language Constructs for Data of Type Relation. ACM Transactions on
Database Systems, 2(3), 1977, 247-261.

Arvind Arasu, Shivnath Babu, Jennifer Widom. The CQL Continuous Query Language: Semantic Foundations and
Query Execution. The VLDB Journal, 15(2), 2006, 121-142.

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak. Consistency Analysis in Bloom: A CALM
and Collected Approach. CIDR, 2011.

Web Data
Sergey Brin and Larry Page. The Anatomy of a Large-scale Hypertextual Web Search Engine. WWW, 1998.

Eric A. Brewer. Combining Systems and Databases: A Search Engine Retrospective. Readings in Database Systems,
Fourth Edition, 2005.

Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, Yang Zhang. WebTables: Exploring the Power of
Tables on the Web. VLDB, 2008.

45

Readings in Database Systems, 5th Edition (2015)

References

[1] Apache Tez. https://tez.apache.org/.

[2] Flexcoin: The Bitcoin Bank, 2014. http://www.flexcoin.com/; originally via Emin Gün Sirer.

[3] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for data stream management. The VLDB JournalThe Interna-
tional Journal on Very Large Data Bases, 12(2):120–139, 2003.

[4] Z. Abedjan, J. Morcos, M. Gubanov, I. F. Ilyas, M. Stonebraker, P. Papotti, and M. Ouzzani. Dataxformer:
Leveraging the web for semantic transformations. In CIDR, 2015.

[5] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The Aqua approximate query answering system.
In SIGMOD, 1999.

[6] A. Adya. Weak consistency: a generalized theory and optimistic implementations for distributed transactions.
PhD thesis, MIT, 1999.

[7] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. In
SIGMOD, 1993.

[8] T. Akidau et al. The dataflow model: A practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. In VLDB, 2015.

[9] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, et al. The Stratosphere platform for big data analytics. The VLDB Journal, 23(6):939–964, 2014.

[10] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey, I. Cetindil, M. Cheelangi,
K. Faraaz, et al. Asterixdb: A scalable, open source bdms. In VLDB, 2014.

[11] P. Alvaro, P. Bailis, N. Conway, and J. M. Hellerstein. Consistency without borders. In SoCC, 2013.

[12] P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier. Blazes: Coordination analysis for distributed programs.
In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 52–63. IEEE, 2014.

[13] T. J. Ameloot. Declarative networking: Recent theoretical work on coordination, correctness, and declarative
semantics. ACM SIGMOD Record, 43(2):5–16, 2014.

[14] T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for declarative networking. Journal of
the ACM (JACM), 60(2):15, 2013.

[15] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
et al. Spark SQL: Relational data processing in spark. In SIGMOD, 2015.

[16] S. Babu and H. Herodotou. Massively parallel databases and MapReduce systems. Foundations and Trends in
Databases, 5(1):1–104, 2013.

[17] P. Bailis. Coordination avoidance in distributed databases. PhD thesis, University of California at Berkeley,
2015.

[18] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Highly Available Transactions:
Virtues and limitations. In VLDB, 2014.

[19] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Feral Concurrency Control: An
empirical investigation of modern application integrity. In SIGMOD, 2015.

46

https://tez.apache.org/
http://www.flexcoin.com/

Readings in Database Systems, 5th Edition (2015)

[20] P. Bailis, A. Fekete, M. J. Franklin, J. M. Hellerstein, A. Ghodsi, and I. Stoica. Coordination avoidance in
database systems. In VLDB, 2015.

[21] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Scalable atomic visibility with RAMP transac-
tions. In SIGMOD, 2014.

[22] P. Bailis and A. Ghodsi. Eventual consistency today: Limitations, extensions, and beyond. ACM Queue, 11(3),
2013.

[23] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica. Probabilistically Bounded Staleness
for practical partial quorums. In VLDB, 2012.

[24] S. Balakrishnan, A. Halevy, B. Harb, H. Lee, J. Madhavan, A. Rostamizadeh, W. Shen, K. Wilder, F. Wu, and
C. Yu. Applying webtables in practice. In CIDR, 2015.

[25] D. S. Batory. On searching transposed files. ACM Transactions on Database Systems (TODS), 4(4), Dec. 1979.

[26] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The multidimensional database system
rasdaman. In SIGMOD, 1998.

[27] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI SQL isolation
levels. In SIGMOD, 1995.

[28] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in database systems, volume
370. Addison-Wesley New York, 1987.

[29] P. A. Bernstein and S. Das. Rethinking eventual consistency. In SIGMOD, 2013.

[30] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-pipelining query execution. In CIDR, 2005.

[31] E. Brewer et al. Lessons from giant-scale services. Internet Computing, IEEE, 5(4):46–55, 2001.

[32] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In OSDI, 2006.

[33] D. D. Chamberlin. Early history of sql. Annals of the History of Computing, IEEE, 34(4):78–82, 2012.

[34] D. D. Chamberlin and R. F. Boyce. Sequel: A structured english query language. In Proceedings of the 1974
ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control, pages 249–264. ACM,
1974.

[35] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering perspective. In PODC, 2007.

[36] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, et al. Telegraphcq: Continuous dataflow processing for an uncertain world. In
CIDR, 2003.

[37] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured data. In OSDI, 2006.

[38] A. Cheung, O. Arden, S. Madden, A. Solar-Lezama, and A. C. Myers. StatusQuo: Making familiar abstractions
perform using program analysis. In CIDR, 2013.

[39] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable deep
learning training system. In OSDI, 2014.

[40] J. Choi et al. ScaLAPACK: A portable linear algebra library for distributed memory computers—design issues
and performance. In Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science,
pages 95–106. Springer, 1996.

47

Readings in Database Systems, 5th Edition (2015)

[41] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into context. In ICDE, 2013.

[42] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable commutativity
rule: Designing scalable software for multicore processors. ACM Transactions on Computer Systems (TOCS),
32(4):10, 2015.

[43] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis. Evita raced: metacompilation for declarative networks.
Proceedings of the VLDB Endowment, 1(1):1153–1165, 2008.

[44] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive data: Samples, histograms,
wavelets, sketches. Foundations and Trends in Databases, 4(1–3):1–294, 2012.

[45] C. J. Date. An architecture for high-level language database extensions. In SIGMOD, 1976.

[46] C. J. Date. A critique of the SQL database language. ACM SIGMOD Record, 14(3), Nov. 1984.

[47] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned networks. ACM CSUR, 17(3):341–
370, 1985.

[48] J. Dean. Designs, lessons and advice from building large distributed systems (keynote). In LADIS, 2009.

[49] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le, et al.
Large scale distributed deep networks. In Advances in Neural Information Processing Systems, pages 1223–
1231, 2012.

[50] A. Deshpande. An initial study of overheads of eddies. ACM SIGMOD Record, 33(1):44–49, 2004.

[51] A. Deshpande and J. M. Hellerstein. Lifting the burden of history from adaptive query processing. In VLDB,
2004.

[52] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foundations and Trends in Databases,
1(1):1–140, 2007.

[53] D. DeWitt and M. Stonebraker. Mapreduce: A major step backwards. The Database Column, 2008.

[54] T. Dohzen, M. Pamuk, S.-W. Seong, J. Hammer, and M. Stonebraker. Data integration through transform reuse
in the morpheus project. In SIGMOD, 2006.

[55] J. Duggan and M. Stonebraker. Incremental elasticity for array databases. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages 409–420. ACM, 2014.

[56] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kep-
ner, T. Kraska, et al. A demonstration of the BigDAWG polystore system. In VLDB, 2015.

[57] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and predicate locks in a
database system. Communications of the ACM, 19(11):624–633, 1976.

[58] J. Fan, A. Gerald, S. Raj, and J. M. Patel. The case against specialized graph analytics engines. In CIDR, 2015.

[59] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation serializable. ACM
TODS, 30(2):492–528, June 2005.

[60] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM (JACM), 32(2):374–382, 1985.

[61] M. J. Franklin. Concurrency control and recovery. The Computer Science and Engineering Handbook, pages
1–58–1077, 1997.

48

Readings in Database Systems, 5th Edition (2015)

[62] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In SOSP, 2003.

[63] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian, and
S. Vaithyanathan. Systemml: Declarative machine learning on mapreduce. In ICDE, 2011.

[64] J. E. Gonzales, R. S. Xin, D. Crankshaw, A. Dave, M. J. Franklin, and I. Stoica. Graphx: Unifying data-parallel
and graph-parallel analytics. In OSDI, 2014.

[65] G. Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):19–29, 1995.

[66] G. Graefe. The five-minute rule twenty years later, and how flash memory changes the rules. In DaMoN, 2007.

[67] J. Gray. Notes on data base operating systems. In Operating Systems: An Advanced Course, volume 60 of
Lecture Notes in Computer Science, pages 393–481. Springer Berlin Heidelberg, 1978.

[68] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1(1):29–53, 1997.

[69] J. Gray and G. Graefe. The five-minute rule ten years later, and other computer storage rules of thumb. ACM
SIGMOD Record, 26(4):63–68, 1997.

[70] J. Gray, P. Helland, P. ONeil, and D. Shasha. The dangers of replication and a solution. In SIGMOD, 1996.

[71] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions on Database Systems (TODS),
31(1):133–160, Mar. 2006.

[72] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks and degrees of consistency in a shared data
base. Technical report, IBM, 1976.

[73] J. Gray and F. Putzolu. The 5 minute rule for trading memory for disc accesses and the 10 byte rule for trading
memory for cpu time. In SIGMOD, 1987.

[74] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou. Datalog and recursive query processing. Foundations and
Trends in Databases, 5(2):105–195, 2013.

[75] R. Guerraoui. Revisiting the relationship between non-blocking atomic commitment and consensus. In WDAG,
1995.

[76] R. Guerraoui, M. Larrea, and A. Schiper. Non blocking atomic commitment with an unreliable failure detector.
In SRDS, 1995.

[77] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing queries across diverse data sources. In VLDB,
1997.

[78] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Computing Surveys
(CSUR), 15(4):287–317, 1983.

[79] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2):8–
12, Mar. 2009.

[80] D. H. Hansson et al. Ruby on rails. http://www.rubyonrails.org.

[81] D. Harris. Forbes: Why Cloudera is saying ’Goodbye, MapReduce’ and ’Hello, Spark’, 2015. http://

fortune.com/2015/09/09/cloudera-spark-mapreduce/.

[82] M. Hausenblas and J. Nadeau. Apache Drill: Interactive ad-hoc analysis at scale. Big Data, 1(2):100–104,
2013.

49

http://www.rubyonrails.org
http://fortune.com/2015/09/09/cloudera-spark-mapreduce/
http://fortune.com/2015/09/09/cloudera-spark-mapreduce/

Readings in Database Systems, 5th Edition (2015)

[83] P. Helland and D. Campbell. Building on quicksand. In CIDR, 2009.

[84] J. M. Hellerstein. The declarative imperative: experiences and conjectures in distributed logic. ACM SIGMOD
Record, 39(1):5–19, 2010.

[85] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, et al. The MADlib analytics library: or MAD skills, the SQL. In VLDB, 2012.

[86] T. Ibaraki and T. Kameda. On the optimal nesting order for computing n-relational joins. ACM Transactions on
Database Systems (TODS), 9(3):482–502, 1984.

[87] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and deduplication. Foundations and
Trends in Databases, 5(4):281–393, 2012.

[88] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join results. In SIGMOD,
1991.

[89] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from sequential
building blocks. In EuroSys, 2007.

[90] A. Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M. Stonebraker. Vertexica: your relational friend
for graph analytics! In VLDB, 2014.

[91] P. R. Johnson and R. H. Thomas. Rfc 667: The maintenance of duplicate databases. Technical report, 1 1975.

[92] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-performance broadcast for primary-backup systems. In
DSN, 2011.

[93] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal query execution plans. In
SIGMOD, 1998.

[94] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive visual specification of data transfor-
mation scripts. In CHI, 2011.

[95] J. Kepner et al. Dynamic distributed dimensional data model (D4M) database and computation system. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pages 5349–5352.
IEEE, 2012.

[96] R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to dimensional modeling. John Wiley
& Sons, 2011.

[97] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude, P. In-
gram, et al. Network virtualization in multi-tenant datacenters. In USENIX NSDI, 2014.

[98] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, et al. Impala: A modern, open-source sql engine for hadoop. In CIDR, 2015.

[99] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133–169, 1998.

[100] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system. Technical report, 1979.

[101] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su.
Scaling distributed machine learning with the parameter server. In OSDI, 2014.

[102] B. Liskov and J. Cowling. Viewstamped replication revisited. Technical report, MIT, 2012.

[103] G. M. Lohman. Grammar-like functional rules for representing query optimization alternatives. In SIGMOD,
1988.

50

Readings in Database Systems, 5th Edition (2015)

[104] R. Lorie and A. Symonds. A relational access method for interactive applications. Courant Computer Science
Symposia, Vol. 6: Data Base Systems, 1971.

[105] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed graphlab: a
framework for machine learning and data mining in the cloud. In VLDB, 2012.

[106] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus, S. Kumar, and W. Lloyd. Existential
consistency: measuring and understanding consistency at Facebook. In SOSP, 2015.

[107] H. P. Luhn. Auto-encoding of documents for information retrieval systems. Modern Trends in Documentation,
pages 45–58, 1959.

[108] R. MacNicol and B. French. Sybase iq multiplex-designed for analytics. In VLDB, 2004.

[109] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous queries over streams.
In SIGMOD, 2002.

[110] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In SIGMOD, 2010.

[111] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory OLTP recovery. In ICDE,
2014.

[112] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The design and implementation of the 4.4 BSD
operating system. Pearson Education, 1996.

[113] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In HotOS, 2015.

[114] E. Meijer. Your mouse is a database. Queue, 10(3):20, 2012.

[115] E. Meijer, B. Beckman, and G. Bierman. Linq: reconciling object, relations and XML in the .NET framework.
In SIGMOD, 2006.

[116] J. Melton, J. E. Michels, V. Josifovski, K. Kulkarni, and P. Schwarz. Sql/med: a status report. ACM SIGMOD
Record, 31(3):81–89, 2002.

[117] R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan, C. H. Ho, R. Fagin, and L. Popa. The clio project:
managing heterogeneity. SIGMOD Record, 30(1):78–83, 2001.

[118] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, resource management, and approximation in a data stream management system.
In CIDR, 2003.

[119] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely dataflow system.
In SOSP, 2013.

[120] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang, R. Krishnamurthy, Q. Luo,
N. Prakash, et al. The niagara internet query system. IEEE Data Eng. Bull., 24(2):27–33, 2001.

[121] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms:[extended abstract]. In Proceed-
ings of the 31st symposium on Principles of Database Systems, pages 37–48. ACM, 2012.

[122] F. Olken. Random sampling from databases. PhD thesis, University of California at Berkeley, 1993.

[123] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD, 2008.

[124] P. E. O’Neil. The escrow transactional method. ACM Transactions on Database Systems, 11(4):405–430, 1986.

51

Readings in Database Systems, 5th Edition (2015)

[125] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In USENIX ATC, 2014.

[126] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: bringing order to the web.
Technical report, Stanford InfoLab, 1999. SIDL-WP-1999-0120.

[127] R. Ramakrishnan and J. Gehrke. Database management systems. McGraw Hill, 2000.

[128] R. Ramakrishnan and S. Sudarshan. Top-down vs. bottom-up revisited. In Proceedings of the International
Logic Programming Symposium, pages 321–336, 1991.

[129] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state modules for adaptive query processing. In ICDE.
IEEE, 2003.

[130] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning system. In VLDB, 2001.

[131] V. Raman and J. M. Hellerstein. Partial results for online query processing. In SIGMOD, pages 275–286. ACM,
2002.

[132] A. Rasmussen, V. T. Lam, M. Conley, G. Porter, R. Kapoor, and A. Vahdat. Themis: An i/o-efficient mapreduce.
In SoCC, 2012.

[133] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing Systems, pages 693–701, 2011.

[134] M. T. Roth and P. M. Schwarz. Don’t scrap it, wrap it! a wrapper architecture for legacy data sources. In VLDB,
1997.

[135] L. A. Rowe and K. A. Shoens. Data abstraction, views and updates in RIGEL. In SIGMOD, 1979.

[136] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and J. Gehrke. The homeostasis protocol:
Avoiding transaction coordination through program analysis. In SIGMOD, 2015.

[137] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and J. Gehrke. The homeostasis protocol:
Avoiding transaction coordination through program analysis. In SIGMOD, 2015.

[138] Y. Saito and M. Shapiro. Optimistic replication. ACM Comput. Surv., 37(1), Mar. 2005.

[139] G. Salton and M. E. Lesk. Computer evaluation of indexing and text processing. Journal of the ACM (JACM),
15(1):8–36, 1968.

[140] J. W. Schmidt. Some high level language constructs for data of type relation. ACM Trans. Database Syst., 2(3),
Sept. 1977.

[141] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[142] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A comprehensive study of convergent and commutative
replicated data types. INRIA TR 7506, 2011.

[143] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea, K. Littlefield, D. Menestrina,
S. Ellner, et al. F1: A distributed sql database that scales. In VLDB, 2013.

[144] N. Siva. 1000 genomes project. Nature biotechnology, 26(3):256–256, 2008.

[145] D. Skeen. Nonblocking commit protocols. In SIGMOD, 1981.

[146] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J. Franklin, M. Jordan, T. Kraska,
et al. Mli: An api for distributed machine learning. In ICDM, 2013.

52

Readings in Database Systems, 5th Edition (2015)

[147] M. Stonebraker. The land sharks are on the squawk box. Communications of the ACM. To appear.

[148] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu. Data
curation at scale: The data tamer system. In CIDR, 2013.

[149] M. Stonebraker and U. Çetintemel. “one size fits all”: an idea whose time has come and gone. In ICDE, 2005.

[150] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and implementation of ingres. ACM Transactions
on Database Systems (TODS), 1(3):189–222, 1976.

[151] M. Stonebraker, S. Madden, and P. Dubey. Intel big data science and technology center vision and execution
plan. ACM SIGMOD Record, 42(1):44–49, 2013.

[152] M. Stonebraker and E. Neuhold. The laguna beach report. Technical Report 1, International Institute of Com-
puter Science, 1989.

[153] D. Terry. Replicated data consistency explained through baseball. Communications of the ACM, 56(12):82–89,
2013.

[154] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, et al. Session guarantees for weakly
consistent replicated data. In PDIS, 1994.

[155] The SciDB Development Team. Overview of SciDB: large scale array storage, processing and analysis. In
SIGMOD, 2010.

[156] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: A
warehousing solution over a map-reduce framework. In VLDB, 2009.

[157] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query scrambling for initial delays. ACM SIGMOD
Record, 27(2):130–141, 1998.

[158] M. Vartak, S. Madden, A. Parameswaran, and N. Polyzotis. Seedb: automatically generating query visualiza-
tions. In VLDB, 2014.

[159] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency properties and the trade-offs in commercial
cloud storage: the consumers’ perspective. In CIDR, 2011.

[160] A. N. Wilschut and P. M. Apers. Dataflow query execution in a parallel main-memory environment. In Parallel
and Distributed Information Systems, 1991., Proceedings of the First International Conference on, pages 68–77.
IEEE, 1991.

[161] E. Wong and K. Youssefi. Decompositiona strategy for query processing. ACM Transactions on Database
Systems (TODS), 1(3):223–241, 1976.

[162] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries. In VLDB, 2013.

[163] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.

53

	Preface
	Background Introduced by Michael Stonebraker
	Traditional RDBMS Systems Introduced by Michael Stonebraker
	Techniques Everyone Should Know Introduced by Peter Bailis
	New DBMS Architectures Introduced by Michael Stonebraker
	Large-Scale Dataflow Engines Introduced by Peter Bailis
	Weak Isolation and Distribution Introduced by Peter Bailis
	Query Optimization Introduced by Joe Hellerstein
	Interactive Analytics Introduced by Joe Hellerstein
	Languages Introduced by Joe Hellerstein
	Web Data Introduced by Peter Bailis
	A Biased Take on a Moving Target: Complex Analytics by Michael Stonebraker
	A Biased Take on a Moving Target: Data Integration by Michael Stonebraker
	List of All Readings
	References

