
Applied Computer Science:CSI 4101

SYSTEMS 
PROGRAMMING
Dr.Godfrey Justo



Foreword

The African Virtual University (AVU) is proud to participate in increasing access to education in 

African countries through the production of quality learning materials. We are also proud to 

contribute to global knowledge as our Open Educational Resources are mostly accessed from 

outside the African continent. 

This module was developed as part of a diploma and degree program in Applied Computer 

Science, in collaboration with 18 African partner institutions from 16 countries. A total of 156 

modules were developed or translated to ensure availability in English, French and Portuguese. 

These modules have also been made available as open education resources (OER) on oer.avu.

org.

On behalf of the African Virtual University and our patron, our partner institutions, the African 

Development Bank, I invite you to use this module in your institution, for your own education, 

to share it as widely as possible and to participate actively in the AVU communities of practice 

of your interest.  We are committed to be on the frontline of developing and sharing Open 

Educational Resources.

The African Virtual University (AVU) is a Pan African Intergovernmental Organization established 

by charter with the mandate of significantly increasing access to quality higher education and 

training through the innovative use of information communication technologies. A Charter, 

establishing the AVU as an Intergovernmental Organization, has been signed so far by 

nineteen (19) African Governments - Kenya, Senegal, Mauritania, Mali, Cote d’Ivoire, Tanzania, 

Mozambique, Democratic Republic of Congo, Benin, Ghana, Republic of Guinea, Burkina Faso, 

Niger, South Sudan, Sudan, The Gambia, Guinea-Bissau, Ethiopia and Cape Verde. 

The following institutions participated in the Applied Computer Science Program: (1) Université 

d’Abomey Calavi in Benin; (2) Université de Ougagadougou in Burkina Faso; (3) Université 

Lumière de Bujumbura in Burundi; (4) Université de Douala in Cameroon; (5) Université de 

Nouakchott in Mauritania; (6) Université Gaston Berger in Senegal; (7) Université des Sciences, 

des Techniques et Technologies de Bamako in Mali (8) Ghana Institute of Management and 

Public Administration; (9) Kwame Nkrumah University of Science and Technology in Ghana; (10) 

Kenyatta University in Kenya; (11) Egerton University in Kenya; (12) Addis Ababa University in 

Ethiopia (13) University of Rwanda; (14) University of Dar es Salaam in Tanzania; (15) Universite 

Abdou Moumouni de Niamey in Niger; (16) Université Cheikh Anta Diop in Senegal; (17) 

Universidade Pedagógica in Mozambique; and (18) The University of the Gambia in The 

Gambia.

Bakary Diallo

The Rector

African Virtual University

Systems Programming

2



Production Credits

Author
Godfrey Justo

Peer Reviewer
Dessalegn Mequanint

AVU - Academic Coordination 
Dr. Marilena Cabral

Overall Coordinator Applied Computer Science Program 
Prof Tim Mwololo Waema

Module Coordinator
Jules Degila

Instructional Designers 
Elizabeth Mbasu    

Benta Ochola

Diana Tuel

Media Team
Sidney McGregor   Michal Abigael Koyier

Barry Savala     Mercy Tabi Ojwang

Edwin Kiprono    Josiah Mutsogu

Kelvin Muriithi    Kefa Murimi

Victor Oluoch Otieno   Gerisson Mulongo

3



Copyright Notice

This document is published under the conditions of the Creative Commons 

http://en.wikipedia.org/wiki/Creative_Commons

Attribution http://creativecommons.org/licenses/by/2.5/

Module Template is copyright  African Virtual University  licensed under a Creative Commons 

Attribution-ShareAlike 4.0 International License. CC-BY, SA

Supported By

AVU Multinational Project II funded by the African Development Bank.

Systems Programming

4



Table of Contents 
Foreword 2

Production Credits 3

Copyright Notice 4

Supported By 4

Course Overview 10

Welcome to Systems Programming Module                                         10

Prerequisites                                                                         10

Materials                                                                             10

Units 11

Unit 0: Pre-Assessment                                                               11

Unit 1: The C Library and I/O System Calls                                           11

Unit 2: Shell Programming and Embedding Assembly in C                          11

Unit 3: Processes, Threads and Memory management                               11

Unit 3: Processes, Threads and Memory management                              12

Unit 4: Inter Process Communication                                                12

  Assessment                                                                       12

Schedule 13

Readings and Other Resources 13

Unit 0                                                                                13

Unit 1                                                                                14

Unit 2                                                                                14

Unit 3                                                                                14

Unit 4                                                                                15

Unit 0. Pre-Assessment 16

Unit Introduction                                                                     16

Unit Objectives                                                                       17

Activity 1 – Getting Started with C Programming                                   17

5



Introduction 17

Activity details                                                                       18

Conclusion                                                                           28

Answers 28

Unit Readings and Other Resources                                                 28

     Assessment                                                                       28

     Unit Assessment                                                                 28

 Instructions 28

Unit .1 The C Library and I/O System Call 29

Unit Introduction                                                                     29

Unit Objectives                                                                      29

Learning Activities                                                                   30

Activity 1- The GNU C Library Overview                                             30

Introduction 30

Activity Details                                                                       30

Standards and Portability                                                           30

Using the Library                                                                     32

The C Library for Allocation of Storage for Program Data                          40

Conclusion                                                                           43

    Assessment                                                                       44

Activity 2 - File, Directories and Links                                                44

 Introduction 44

Activity Details                                                                       44

Examining or Modifying Directories . . . . . . . . . . . . . . . . . 44

Conclusion                                                                           52

   Assessment                                                                        53

Activity 3 - File input/output system calls                                            55

Introduction 55

Activity Details                                                                       56

Systems Programming

6



Activity Details                                                                       61

    Assessment                                                                       63

  Unit Assessment                                                                    65

Grading Scheme                                                                     66

Answers 66

Unit Readings and Other Resources                                                 66

Unit 2.Shell Programming and Embedding Assembly in C  67

Unit Introduction  . . . . . . . . . . . . . . . . . . . . . 67
Learning Activities                                                                   69

Activity 1 - Shell Basics                                                               69

Introduction  69

  Key Terms                                                                          69

Activity Details                                                                       71

Conclusion                                                                           81

Activity 2 – Shell Programming                                                       81

Introduction 81

  Assessment                                                                         81

Activity Details                                                                       82

Getting started with Scripting                                                       82

Conclusion                                                                           94

Activity 3 - Inline Assembly Code                                                    94

Introduction 94

Activity Details                                                                       95

    Assessment                                                                      102

  Unit Summary                                                                     102

Conclusion                                                                         102

    Unit Assessment                                                                 103

Instructions 103

Grading Scheme                                                                   106

7



Unit Readings and Other Resources                                               106

Unit 3.  Processes,Threads and Memory management  107

Unit Introduction                                                                    107

  Key Terms                                                                         108

Learning Activities                                                                 108

Activity 1 - Processes                                                               108

Introduction  108

Activity Details                                                                     109

  Assessment                                                                       124

Conclusion                                                                         124

Activity 2 - Threads                                                                 124

Introduction 124

Activity Details                                                                     126

Conclusion                                                                         132

Activity 3 - Memory Management                                                 133

Introduction 133

Activity details                                                                     134

Assessment                                                                         142

Conclusion                                                                         142

  Unit Summary                                                                     144

    Unit Assessment                                                                144

Instructions 144

Grading Scheme                                                                    147

Answers 147

Unit Readings and Other Resources                                                147

Unit 4.  Inter Process Communication  148

Unit Introduction                                                                   148

Unit Objectives                                                                     149

Learning Activities                                                                 149

Systems Programming

8



Activity 1 - Pipes                                                                   149

Introduction 149

Activity Details                                                                     150

Conclusion                                                                         155

  Assessment                                                                       155

Activity 2 - FIFOs                                                                   156

Introduction 156

Activity Details                                                                     156

Conclusion                                                                          157

Activity 3 - Sockets                                                                  157

Introduction 157

  Assessment                                                                        157

Activity Details                                                                     158

Conclusion                                                                         168

   Assessment                                                                       168

 Unit Summary                                                                     169

  Unit Assessment                                                                  169

Instructions 169

9



Course Overview
Welcome to Systems Programming Module
The basic objective of coding activity is to produce programs that are easy to understand. 

It has been argued by many that systems programming practice helps develop programs 

that are easy to understand. The System Programming module is about advance low level 

programming topics in C, thus assume that you are already familiar with the C programming 

language and that you know how to use the standard C library functions in your programs. The 

C language is the most widely used language for developing System software; most of the 

commands and libraries that we discuss in this module, and most of the Linux kernel itself, are 

written in C. Consolidate the programming skills from the previous core courses. The System 

Programming course concentrates on how programs run in user space and how the interact 

with the OS. It does not cover OS internals. That will be covered in the Operating Systems 

CourseIt solidifies the programming skills by having the students write large programs (>1000 

lines). The students will use tools like IDEs, debuggers, profilers, and source control to help 

them write good and maintainable code. The students will learn how to work on teams. The 

Module Intends to apply use of Scripting Languages. The students will learn to write multi-

process and multi-threaded programs. This Module will cover The C Library and I/O System 

Calls, Shell Programming and Embedding Assembly in C, Processes, Threads and Memory 

management and Inter Process Communication

Prerequisites

• Introduction to operating systems 

• Introduction to structured programming

• Unix/Linux Operating system basics

• Programming in C

Materials
The materials required to complete this course are:  

• Linux,

• Computer with internet

• C programming language

Systems Programming

10



Units

Course Goals
Upon completion of this course the learner should be able to 

• write low-level programs using C programming language;  

• write shell programs to access the kernel and Kernel APIs. basic operating system 
command files

• Program in low-level Unix/Linux

Units
Unit 0: Pre-Assessment
This unit provides an overview to the systems programming module. It reviews the basics of 

programming with C Language and describe the organization of modules contents, activities 

and assessments.

Unit 1: The C Library and I/O System Calls
This unit provides an overview of the GNU C Library, including the library Standards and 

Portability, the basics of using the library, and the case of C library functions for allocation 

of storage for program data. The unit further explores the GNU C library’s functions for 

manipulating files and directories. The unit also discusses the file input/output system calls in 

GNU/LINUX platform and highlights the kernel’s I/O calls relation to Standard C Library I/O 

functions.

Unit 2: Shell Programming and Embedding Assembly in C
Shell program provided by the Operating Systems accepts user instruction or commands 

and pass to the kernel, similarly, programs written in Higher-level languages such as C also 

provide a way to instruct the hardware to perform some user task. For occasions when high-

level language programmers need to use assembly instructions in their programs, the GNU 

Compiler Collection permits programmers to add architecture-dependent assembly language 

instructions to their programs. This unit explores both programming context, namely, the shell 

programming and inlining assembly in C.

Unit 3: Processes, Threads and Memory management
Program must be brought into memory and placed within a process for it to be run. A running 

instance of a program is called a process, and threads like processes, are a mechanism to 

allow a program to do more than one thing at a time. In this unit we shall describe the process, 

thread and memory manipulation functions in Linux systems most of whose are similar to those 

on other UNIX systems. 

11



Unit 3: Processes, Threads and Memory management
Program must be brought into memory and placed within a process for it to be run. A running 

instance of a program is called a process, and threads like processes, are a mechanism to 

allow a program to do more than one thing at a time. In this unit we shall describe the process, 

thread and memory manipulation functions in Linux systems most of whose are similar to those 

on other UNIX systems. 

Unit 4: Inter Process Communication
Inter-process communication is the transfer of data among processes. In this unit we present 

various ways for communicating between parents and children, between “unrelated” 

processes, and even between processes on different machines. Three types of inter-process 

communication are discussed:

i. Pipes - permit sequential communication from one process to a related process;

ii. FIFOs - are similar  to pipes, except that unrelated processes can communicate 

because the pipe is given a name in the filesystem ; 

iii. Sockets - support communication between unrelated processes even on different 

computers.

  Assessment
Formative assessments, used to check learner progress, are included in each unit.

Summative assessments, such as final tests and assignments, are provided at the 
end of each module and cover knowledge and skills from the entire module. 

Summative assessments are administered at the discretion of the institution offering 
the course. The suggested assessment plan is as follows:

1 Formative 

evaluation

60

2 Summative 

evaluation

40

3 Total 100

Systems Programming

12



Schedule

Schedule
Unit Activities Estimated

Unit 0: Pre-Assessment Activities+ Questions 20 Hours

Unit 1: The C Library 

and I/O System Calls

Activities + Questions 25 Hours

Activities + Questions 25 Hours

Unit 2: Shell 

Programming and 

Embedding Assembly 

in C

Unit 3: Processes, 

Threads and Memory 

management

Activities+ Questions 25 Hours

Unit 4: Inter Process 

Communication

Activities + Questions 25 Hours

Readings and Other Resources
The readings and other resources in this course are:

Unit 0
 Required readings and other resources:

1. Advanced Linux Programming, by Mark Mitchell, Jeffrey Oldham, and Alex 
Samuel, New Riders Publishing, FIRST EDITION: June, 2001, pp 3-15

Optional readings and other resources:

1. 1. Linux System Programming: Talking Directly to the Kernel and C Library  
By Robert Love

2. UNIX Systems Programming: Communication, Concurrency, and Threads.  
By Kay A. Robbins, Steven Robbins 

13



Unit 1
Required readings and other resources:

1. The GNU C Library Reference Manual, Sandra Loosemore With Richard M. 
Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper for version 
2.21, Copyright c 1993–2014 Free Software Foundation, Inc. (http://www.
gnu.org/software/libc/manual/pdf/libc.pdf)

2. Advanced Linux Programming, by Mark Mitchell, Jeffrey Oldham, and Alex 
Samuel, New Riders Publishing, FIRST EDITION: June, 2001, pp 281-300

Optional readings and other resources:

1. Linux System Programming: Talking Directly to the Kernel and C Library  By 
Robert Love

2. UNIX Systems Programming: Communication, Concurrency, and Threads.  
By Kay A. Robbins, Steven Robbins 

3. http://www.acm.uiuc.edu/webmonkeys/book/c_guide/: The C Library 
Reference Guide

4. http://www.delorie.com/gnu/docs/glibc/libc_toc.html: The GNU C Library

Unit 2
 Required readings and other resources:

1. Learning the bash Shell: Unix Shell Programming  By Cameron Newham and 
Bill Rosenblatt,Copyright 2005, O’Reilly Media, USA.

Optional readings and other resources:

1. Learning the bash Shell: Unix Shell Programming (In a Nutshell (O’Reilly)),  

2. Kindle Edition, Cameron Newham (Author) 

3. Advanced Linux Programming, by Mark Mitchell, Jeffrey Oldham, and Alex 

4. Samuel, New Riders Publishing, FIRST EDITION: June, 2001

Unit 3
  Required readings and other resources:

1. Advanced Linux Programming, by Mark Mitchell, Jeffrey Oldham, and Alex 
Samuel, New Riders Publishing, FIRST EDITION: June, 2001, pp 3-15

Systems Programming

14



Readings and Other Resources

Optional readings and other resources:

1. Linux System Programming: Talking Directly to the Kernel and C Library  By 
Robert Love

2. Linux Kernel Development,  Robert Love, Pearson Education, 22 Jun 2010

3. UNIX Systems Programming: Communication, Concurrency, and Threads.  
By Kay A. Robbins, Steven Robbins 

Unit 4
 Required readings and other resources:

1. Advanced Linux Programming, by Mark Mitchell, Jeffrey Oldham, and Alex 
Samuel, New Riders Publishing, FIRST EDITION: June, 2001

2. Optional readings and other resources:

3. UNIX Systems Programming: Communication, Concurrency, and Threads,  
By Kay A. Robbins, Steven Robbins, Prentice Hall Professional, 2003

4. Interprocess Communications in Linux,  By John Shapley Gray, Prentice Hall 
Professional, 2003

5. UNIX Network Programming: Interprocess communications, Volume 2 , W. 
Richard Stevens Prentice Hall PTR, 1999 

6. Linux System Programming: Talking Directly to the Kernel and C Library By 
Robert Love

15



Unit 0. Pre-Assessment
Unit Introduction
The System Programming module is about advanced programming topics in C, thus assume 

that you are already familiar with the C programming language and that you know how to use 

the standard C library functions in your programs. The C language is the most widely used 

language for developing System software; most of the commands and libraries that we discuss 

in this module, and most of the Linux kernel itself, are written in C.

The information in this module is equally applicable to C++ programs because the language is 

roughly a superset of C.  If you’ve programmed on another UNIX-like system platform before, 

chances are good that you already know your way around Linux’s low-level I/O functions 

(open,read, stat, and so on). These are different from the standard C library’s I/O functions 

(fopen, fprintf, fscanf, and so on). Both are useful in System programming, and we shall learn 

and use both sets of I/O functions in this module. If you’re not familiar with the low-level I/O 

functions, relax and rest assured to be familiar soon since in Unit 1 we shall deal with “Low-

Level I/O”.

This module does not provide a general introduction to GNU/Linux systems. It is assumed that 

you already have a basic knowledge of how to interact with a GNU/Linux system and perform 

basic operations in graphical and command-line environments (If you are wondering how 

you can use GCC on Windows, you can just download Cygwin from www.cygwin.com).  The 

following basic conventions shall be used.

• When we show interactions with a command shell, we use $ 
as the shell prompt (your shell is probably configured to use a 
different prompt). Everything after the prompt is what you type, 
while other lines of text are the system’s response. For example, 
in this interaction 

$uname 

Linux 

the system prompted you with $. You entered the uname 
command. The system responded by printing Linux.

• The source code examples includes a filename in double 
quotation marks. If you copy in the code example, save it 
to a file by this name.  The code examples were written and 
tested using the Red Hat 6.2 distribution of GNU/Linux. This 
distribution incorporates release 2.2.14 of the Linux kernel, 
release 2.1.3 of the GNU C library, and the EGCS 1.1.2 release 
of the GNU C compiler. The information andprograms provided 
in this module should generally be applicable to other versions 
and distributions of GNU/Linux as well, including 2.4 releases 
of the Linux kernel and 2.2 releases of the GNU C library.

Systems Programming

16



Unit 0. Pre-Assessment

• Release 2.2.14 of the Linux kernel, release 2.1.3 of the GNU 
C library, and the EGCS 1.1.2 release of the GNU C compiler. 
The information and programs provided in this module should 
generally be applicable to other versions and distributions of 
GNU/Linux as well, including 2.4 releases of the Linux kernel 
and 2.2 releases of the GNU C library.

Unit Objectives
Upon completion of this unit you should be able to:

• Create and open C/C++ source file

• Compile with GCC single/multiple C/C++ source files

• Link object files

• Automate the compilation and link Process with GNU Make

• Debug  C/C++ programs with GNU Debugger

• Work with header files in C/C++ programs

• Search for  help information from  Linux sources

Key Terms
Compiler: Turns human-readable source code into machine-readable 
object code that can actually run

Linker: A computer program that takes one or more object files 
generated by a compiler and combines them into a single executable 
file, library file, or another object file

Debugger:The program that you use to figure out why your program 
isn’t behaving the way you think it should

GCC:The GNU Compiler Collection

GNU:GNU’s Not Unix!

Activity 1 – Getting Started with C Programming

Introduction

This module reviews the basic steps required to create a C or C++ Linux program. In particular, 

we describe how to create and modify C and C++ source code, compile that code, and debug 

the result.

17



Activity details
Creating/Opening a C or C++ Source File

An editor is the program that you use to edit source code. Lots of different editors are available 

for Linux, but the most popular and full-featured editor is probably GNU Emacs. You can start 

Emacs or any of your favourite editor by typing its name in your terminal window and pressing 

the Return key, e.g. type emacs to invoke the Emacs editor. When your editor has been started, 

you can use the menus at the top to create a new source file.  

If you want to create a C source file, use a filename that ends in .c or .h. If you want to create 

a C++ source file, use a filename that ends in .cpp, .hpp, .cxx, .hxx, .C, or .H. When the file is 

open, you can type as you would in any ordinary word-processing program.

Compiling with GCC

A compiler turns human-readable source code into machine-readable object code that can 

actually run. The compilers of choice on Linux systems are all part of the GNU Compiler 

Collection, usually known as GCC. GCC also include compilers for C, C++, Java, Objective-C, 

Fortran, and Chill. This module focuses mostly on C programming. Suppose that you have a 

project with one C++ source file “reciprocal.cpp” and one C source file “main.c” as shown 

below. These two files are supposed to be compiled and then linked together to produce a 

program called reciprocal (Note: In Windows, executables usually have names that end in .exe. 

Linux programs, on the other hand, usually have no extension. So, the Windows equivalent of 

this program would probably be called reciprocal.exe; the Linux version is just plain reciprocal.). 

This program computes the reciprocal of an integer.

//Program “main.c” -  C source file—main.c

#include <stdio.h>

#include “reciprocal.hpp”

int main (int argc, char **argv)

{

int i;

i = atoi (argv[1]);

printf (“The reciprocal of %d is %g\n”, i, reciprocal (i));

return 0;

}

//Program “reciprocal.cpp” -  C++ source file—reciprocal.cpp

#include <cassert>

#include “reciprocal.hpp”

Systems Programming

18



Unit 0. Pre-Assessment

double reciprocal (int i) {

// I should be non-zero.

assert (i != 0);

return 1.0/i;

}

There is also one header file called “reciprocal.hpp”, as given below.

//Header file “reciprocal.hpp” - Header file—reciprocal.hpp

#ifdef __cplusplus

extern “C” {

#endif

extern double reciprocal (int i);

#ifdef __cplusplus

}

#endif

The first step is to turn the C and C++ source code into object code.

Compiling a Single Source File

The name of the C compiler is gcc. To compile a C source file, you use the –c option. So, for 

example, entering this at the command prompt compiles the main.c source file:

$ gcc -c main.c

The resulting object file is named main.o.

The C++ compiler is called g++. Its operation is very similar to gcc; compiling reciprocal.cpp is 

accomplished by entering the following:

$ g++ -c reciprocal.cpp

The -c option tells g++ to compile the program to an object file only; without it, g++ will 

attempt to link the program to produce an executable. After you’ve typed this command, you’ll 

have an object file called reciprocal.o.You’ll probably need a couple other options to build any 

reasonably large program. The -I option is used to tell GCC where to search for header files. 

By default, GCC looks in the current directory and in the directories where headers for the 

standard libraries are installed. If you need to include header files from somewhere else, you’ll 

need the -I option. For example, suppose that your project has one directory called src, for 

source files, and another called include.You would compile reciprocal.cpp like this to indicate 

that g++ should use the ../include directory in addition to find reciprocal.hpp:

$ g++ -c -I ../include reciprocal.cpp

19



Sometimes you’ll want to define macros on the command line. For example, in production 

code, you don’t want the overhead of the assertion check present in reciprocal.cpp; that’s only 

there to help you debug the program. You turn off the check by defining the macro NDEBUG. 

You could add an explicit #define to reciprocal.cpp, but that   would require changing the 

source itself. It’s easier to simply define NDEBUG on the command line, like this:

$ g++ -c -D NDEBUG reciprocal.cpp

If you had wanted to define NDEBUG to some particular value, you could have done 

something like this:

$ g++ -c -D NDEBUG=3 reciprocal.cpp

If you’re really building production code, you probably want to have GCC optimize the code so 

that it runs as quickly as possible. You can do this by using the -O2 command-line option. (GCC 

has several different levels of optimization; the second level is appropriate for most programs.) 

For example, the following compiles reciprocal.cpp with optimization turned on:

$ g++ -c -O2 reciprocal.cpp

Note that compiling with optimization can make your program more difficult to debug with 

a debugger. Also, in certain instances, compiling with optimization can uncover bugs in your 

program that did not manifest themselves previously. You can pass lots of other options to gcc 

and g++. The best way to get a complete list is to view the online documentation. You can do 

this by typing the following at your command prompt:

$ info gcc

Linking Object Files

Now that you’ve compiled main.c and reciproca.cpp, you’ll want to link them. You should 

always use g++ to link a program that contains C++ code, even if it also contains C code. 

If your program contains only C code, you should use gcc instead. Because this program 

contains both C and C++, you should use g++, like this:

$ g++ -o reciprocal main.o reciprocal.o

The -o option gives the name of the file to generate as output from the link step. Now you can 

run reciprocal like this:

$ ./reciprocal 7

The reciprocal of 7 is 0.142857

As you can see, g++ has automatically linked in the standard C runtime library containing the 

implementation of printf. If you had needed to link in another library (such as a graphical user 

interface toolkit), you would have specified the library with the -l option. In Linux, library names 

almost always start with lib. For example, the Pluggable Authentication Module (PAM) library is 

called libpam.a. To link in libpam.a, you use a command like this:

$ g++ -o reciprocal main.o reciprocal.o –lpam

Systems Programming

20



Unit 0. Pre-Assessment

The compiler automatically adds the lib prefix and the .a suffix. As with header files, the linker 

looks for libraries in some standard places, including the /lib and /usr/lib directories that 

contain the standard system libraries. If you want the linker to search other directories as well, 

you should use the -L option, which is the parallel of the -I option discussed earlier. You can 

use this  line to instruct the linker to look for libraries in the /usr/local/lib/pam directory before 

looking in the usual places:

$ g++ -o reciprocal main.o reciprocal.o -L/usr/local/lib/pam –lpam

Although you don’t have to use the -I option to get the preprocessor to search the current 

directory, you do have to use the -L option to get the linker to search the current directory. In 

particular, you could use the following to instruct the linker to find the test library in the current 

directory:

$ gcc -o app app.o -L. –ltest

Automating the Process with GNU Make

If you’re accustomed to programming for the Windows operating system, you’re probably 

accustomed to working with an Integrated Development Environment (IDE).You add sources 

files to your project, and then the IDE builds your project automatically. Although IDEs are 

available for Linux, this module does not discuss them. Instead, this module shows you how to 

use GNU Make to automatically recompile your code, which is what most Linux programmers 

actually do.

The basic idea behind make is simple. You tell make what targets you want to build and then 

give rules explaining how to build them. You also specify dependencies that indicate when a 

particular target should be rebuilt. In our sample reciprocal project, there are three obvious 

targets: reciprocal.o, main.o, and the reciprocal itself. You already have rules in mind for 

building these targets in the form of the command lines given previously. The dependencies 

require a little bit of thought. Clearly, reciprocal depends on reciprocal.o and main.o because

you can’t link the complete program until you have built each of the object files. The object 

files should be rebuilt whenever the corresponding source files change. There’s one more 

twist in that a change to reciprocal.hpp also should cause both of the object files to be rebuilt 

because both source files include that header file.

In addition to the obvious targets, there should always be a clean target. This target removes 

all the generated object files and programs so that you can start fresh. The rule for this target 

uses the rm command to remove the files

You can convey all that information to make by putting the information in a file named Makefile. 

Here’s what Makefile contains:

reciprocal: main.o reciprocal.o

g++ $(CFLAGS) -o reciprocal main.o reciprocal.o

main.o: main.c reciprocal.hpp

gcc $(CFLAGS) -c main.c

21



reciprocal.o: reciprocal.cpp reciprocal.hpp

g++ $(CFLAGS) -c reciprocal.cpp

clean:

rm -f *.o reciprocal

You can see that targets are listed on the left, followed by a colon and then any dependencies. 

The rule to build that target is on the next line (Ignore the $(CFLAGS) bit for the moment). The 

line with the rule on it must start with a Tab character, or make will get confused. If you edit 

your Makefile in Emacs, Emacs will help you with the formatting. If you remove the object files 

that you’ve already built, and just type

$ make

on the command-line, you’ll see the following:

$ make

gcc -c main.c

g++ -c reciprocal.cpp

g++ -o reciprocal main.o reciprocal.o

You can see that make has automatically built the object files and then linked them. If you now 

change main.c in some trivial way and type make again, you’ll see the following:

$ make

gcc -c main.c

g++ -o reciprocal main.o reciprocal.o

You can see that make knew to rebuild main.o and to re-link the program, but it didn’t bother 

to recompile reciprocal.cpp because none of the dependencies for reciprocal.o had changed. 

The $(CFLAGS) is a make variable. You can define this variable either in the Makefile itself or on 

the command line. GNU make will substitute the value of the variable when it executes the rule. 

So, for example, to recompile with optimization enabled, you would do this:

$ make clean

rm -f *.o reciprocal

$ make CFLAGS=-O2

gcc -O2 -c main.c

g++ -O2 -c reciprocal.cpp

g++ -O2 -o reciprocal main.o reciprocal.o.

Systems Programming

22



Unit 0. Pre-Assessment

Note that the -O2 flag was inserted in place of $(CFLAGS) in the rules. This section, has 

presented only the most basic capabilities of make. You can find out more by typing this:

$ info make

In that manual, you’ll find information about how to make maintaining a Makefile easier, how 

to reduce the number of rules that you need to write, and how to automatically compute 

dependencies. You can also find more information in GNU, Autoconf,Automake, and Libtool by 

Gary V.Vaughan, Ben Elliston,Tom Tromey, and Ian Lance Taylor (New Riders Publishing, 2000).

Debugging with GNU Debugger (GDB)

The debugger is the program that you use to figure out why your program isn’t behaving the 

way you think it should. You’ll be doing this a lot unless your programs always work the first 

time.  The GNU Debugger (GDB) is the debugger used by most Linux programmers. You can 

use GDB to step through your code, set breakpoints, and examine the value of local variables.

Compiling with Debugging Information

To use GDB, you’ll have to compile with debugging information enabled. Do this by adding the 

-g switch on the compilation command line. If you’re using a Makefile as described previously, 

you can just set CFLAGS equal to -g when you run make, as shown here:

$ make CFLAGS=-g

gcc -g -c main.c

g++ -g -c reciprocal.cpp

g++ -g -o reciprocal main.o reciprocal.o

When you compile with -g, the compiler includes extra information in the object files and 

executables. The debugger uses this information to figure out which addresses correspond to 

which lines in which source files, how to print out local variables, and so forth.

Running GDB

You can start up gdb by typing: 

$ gdb reciprocal

When gdb starts up, you should see the GDB prompt:

(gdb)

23



The first step is to run your program inside the debugger. Just enter the command run and any 

program arguments. Try running the program without any arguments, like this:

(gdb) run

Starting program: reciprocal

Program received signal SIGSEGV, Segmentation fault.

__strtol_internal (nptr=0x0, endptr=0x0, base=10, group=0)

at strtol.c:287

287 strtol.c: No such file or directory.

(gdb)

The problem is that there is no error-checking code in main. The program expects one 

argument, but in this case the program was run with no arguments. The SIGSEGV message 

indicates a program crash. GDB knows that the actual crash happened in a function called 

__strtol_internal. That function is in the standard library, and the source isn’t installed, which 

explains the “No such file or directory” message. You can see the stack by using the where 

command:

(gdb) where

#0 __strtol_internal (nptr=0x0, endptr=0x0, base=10, group=0)

at strtol.c:287

#1 0x40096fb6 in atoi (nptr=0x0) at ../stdlib/stdlib.h:251

#2 0x804863e in main (argc=1, argv=0xbffff5e4) at main.c:8

You can see from this display that main called the atoi function with a NULL pointer, which is 

the source of the trouble. You can go up two levels in the stack until you reach main by using 

the up command:

(gdb) up 2

#2 0x804863e in main (argc=1, argv=0xbffff5e4) at main.c:8

8 i = atoi (argv[1]);

Note that gdb is capable of finding the source for main.c, and it shows the line where the 

erroneous function call occurred. You can view the value of variables using the print command:

(gdb) print argv[1]

$2 = 0x0

Systems Programming

24



Unit 0. Pre-Assessment

That confirms that the problem is indeed a NULL pointer passed into atoi. You can set a 

breakpoint by using the break command:

(gdb) break main

Breakpoint 1 at 0x804862e: file main.c, line 8.

This command sets a breakpoint on the first line of main (Some people have commented that 

saying break main is a little bit funny because usually you want to do this only when main is 

already broken). Now try rerunning the program with an argument, like this:

(gdb) run 7

Starting program: reciprocal 7

Breakpoint 1, main (argc=2, argv=0xbffff5e4) at main.c:8

8 i = atoi (argv[1]);

You can see that the debugger has stopped at the breakpoint. You can step over the call to atoi 

using the next command:

(gdb) next

9 printf (“The reciprocal of %d is %g\n”, i, reciprocal (i));

If you want to see what’s going on inside reciprocal, use the step command like this:

(gdb) step

reciprocal (i=7) at reciprocal.cpp:6

6 assert (i != 0);

You’re now in the body of the reciprocal function. You might find it more convenient to run gdb 

from within Emacs rather than using gdb directly from the command line. Use the command 

M-x gdb to start up gdb in an Emacs window. If you are stopped at a breakpoint, Emacs 

automatically pulls up the appropriate source file. It’s easier to figure out what’s going on when 

you’re looking at the whole file rather than just one line of text.

Finding More Information

Nearly every Linux distribution comes with a great deal of useful documentation. You can 

learn most of what has been presented in this module by reading documentation in your 

Linux distribution (although it would probably take you much longer). The documentation isn’t 

always well-organized, though, so the tricky part is finding what you need. Documentation 

is also sometimes out-of-date, so take everything that you read with a grain of salt. If the 

system doesn’t behave the way a man page (manual pages) says it should, for instance, it may 

be that the man page is outdated.To help you navigate, here are the most useful sources of 

information about advanced Linux programming.

25



Man Pages

Linux distributions include man pages for most standard commands, system calls, and standard 

library functions. The man pages are divided into numbered sections; for programmers, the 

most important are these:

(1) User commands

(2) System calls

(3) Standard library functions

(8) System/administrative commands

The numbers denote man page sections. Linux’s man pages come installed on your system; use 

the man command to access them. To look up a man page, simply invoke man name, where 

name is a command or function name. In a few cases, the same name occurs in more than one 

section; you can specify the section explicitly by placing the section number before the name. 

For example, if you type the following, you’ll get the man page for the sleep command (in 

section 1 of the Linux man pages):

$ man sleep

To see the man page for the sleep library function, use this command:

$ man 3 sleep

Each man page includes a one-line summary of the command or function. The whatis name 

command displays all man pages (in all sections) for a command or function matching name. If 

you’re not sure which command or function you want, you can perform a keyword search on 

the summary lines, using man -k keyword.

Man pages include a lot of very useful information and should be the first place you turn 

for help. The man page for a command describes command-line options and arguments, 

input and output, error codes, configuration, and the like. The man page for a system call or 

library function describes parameters and return values, lists error codes and side effects, and 

specifies which include file to use if you call the function.

Info

The Info documentation system contains more detailed documentation for many core 

components of the GNU/Linux system, plus several other programs. Info pages are hypertext 

documents, similar to Web pages. To launch the text-based Info browser, just type info in a 

shell window. You’ll be presented with a menu of Info documents installed on your system. 

(Press Control+H to display the keys for navigating an Info document.)

Systems Programming

26



Unit 0. Pre-Assessment

Among the most useful Info documents are these:

• gcc—The gcc compiler

• libc—The GNU C library, including many system calls

• gdb—The GNU debugger

• emacs—The Emacs text editor

• info—The Info system itself

Almost all the standard Linux programming tools (including ld, the linker; as, the assembler; 

and gprof, the profiler) come with useful Info pages. You can jump directly to a particular Info 

document by specifying the page name on the command line:

$ info libc

If you do most of your programming in Emacs, you can access the built-in Info browser by 

typing M-x info or C-h i.

Header Files

You can learn a lot about the system functions that are available and how to use them by 

looking at the system header files. These reside in /usr/include and /usr/include/sys. If you are 

getting compile errors from using a system call, for instance, take a look in the corresponding 

header file to verify that the function’s signature is the same as what’s listed in the man page.

On Linux systems, a lot of the nitty-gritty details of how the system calls work are reflected in 

header files in the directories /usr/include/bits, /usr/include/asm, and /usr/include/linux. For 

instance, the numerical values of signals are defined in /usr/include/bits/signum.h. These 

header files make good reading for inquiring minds. Don’t include them directly in your 

programs, though; always use the header files in /usr/include or as mentioned in the man page 

for the function you’re using.

Source Code

This is Open Source materials, right? The final arbiter of how the system works is the system 

source code itself, and luckily for Linux programmers, that source code is freely available. 

Chances are, your Linux distribution includes full source code for the entire system and all 

programs included with it; if not, you’re entitled under the terms of the GNU General Public 

License to request it from the distributor (The source code might not be installed on your disk, 

though. See your distribution’s documentation for instructions on installing it).

The source code for the Linux kernel itself is usually stored under /usr/src/linux. If this module 

leaves you thirsting for details of how processes, shared memory, and system devices work, you 

can always learn straight from the source code. Most of the system functions described in this 

module are implemented in the GNU C library; check your distribution’s documentation for the 

location of the C library source code.

27



Conclusion
In this unit we presented the basics of programming with the C/C++ language.

     Assessment
1. Practise the example code given in this unit.

  Unit Summary
This unit presented the fundamentals of working with C/C++ source files, compiling, linking 

and debugging.

     Unit Assessment
   Check your understanding!

  Miscellaneous exercises  

 Instructions

  What is the purpose of a Makefile?

1. Inspect the source code given  in the Linux filesystem folder /usr/src/linux

Grading Scheme

As guided by the offering Institution Grading Regulations

Answers

mailto:njulumi@gmail.com

Unit Readings and Other Resources
1. Mark Mitchell, Jeffrey Oldham, and Alex Samuel; Advanced Linux 

Programming; Copyright © 2001 by New Riders Publishing; FIRST EDITION: 
June, 2001

Systems Programming

28



Unit .1 The C Library and I/O System Call

Unit .1 The C Library and I/O 
System Call
Unit Introduction
The C standard library provides macros, type definitions, and functions for tasks like string 

handling, mathematical computations, input/output processing, memory allocation and several 

other operating system services. This unit will make use of the GNU C library, and assume that 

you are at least somewhat familiar with the C programming language and basic programming 

concepts. Specifically, familiarity with ISO standard, rather than “traditional” pre-ISO C dialects 

is assumed. 

The GNU C library includes several header files, each of which provides definitions and 

declarations for a group of related facilities; this information is used by the C compiler 

when processing your program. For example, the header file `stdio.h’ declares facilities for 

performing input and output, and the header file `string.h’ declares string processing utilities. 

There are a lot of functions in the GNU C library and it’s not realistic to expect that you will 

be able to remember exactly how to use each and every one of them. It’s more important to 

become generally familiar with the kinds of facilities that the library provides, so that when 

you are writing your programs you can recognize when to make use of library functions.  The 

purpose of this unit is to introduce learners how to use the various features of the GNU library. 

Specifically, the unit shall discuss the commonly used file I/O functions and system calls and 

facilities for file, directory and links manipulations. 

Unit Objectives
Upon completion of this unit you should be able to:

• apply different features of the C library in C programs

• use I/O functions and System calls in writing programs 

• add files, directories and links in C programs

29



         

Key Terms
ISO:International Standard Organization

GNU: Goose Not Unix

POSIX:Portable Operating System Interface Extension

C Library: Collection of pre-compiled program routines 
available for re-use in an ordinary C program

Directory (folder): a file system structure in which to store 
computer files

Link (symlink): A special type of file that contains a reference 
to another file or directory in the form of an absolute or relative 
path and that affects pathname resolution.

File:A logical unit of data storage in Operating Systems

Input/output (I/O): Input/output (also “I/O”) refers to the 
activity of   connecting to an input or output device for reading 
or writing data respectively.

System call: a request for the operating system to do 
something on   behalf of the user’s program

Learning Activities

Activity 1- The GNU C Library Overview

Introduction

The C language provides no built-in facilities for performing such common operations as input/

output, memory management, string manipulation, and the like. Instead, these facilities are 

defined in a standard library, which you compile and link with your programs. 

The GNU C library, described in this unit, defines all of the library functions that are specified 

by the ISO C standard, as well as additional features specific to POSIX and other derivatives of 

the Unix operating system, and extensions specific to the GNU system.

Activity Details

Standards and Portability
This section discusses the various standards and other sources that the GNU C library is based 

upon. These sources include the ISO C and POSIX standards, and the System V and Berkeley 

Unix implementations. This section gives you an overview of these standards, so that you will 

know what they are when they are mentioned in other parts of the unit. 

Systems Programming

30



Unit .1 The C Library and I/O System Call

ISO C - The international standard for the C programming

The GNU C library is compatible with the C standard adopted by the American National 

Standards Institute (ANSI): American National Standard X3.159-1989---”ANSI C” and later 

by the International Standardization Organization (ISO): ISO/IEC 9899:1990, “Programming 

languages--C”. We here refer to the standard as ISO C since this is the more general standard 

in respect of ratification. The header files and library facilities that make up the GNU library are 

a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the `-ansi’ 

option when you compile your programs with the GNU C compiler. This tells the compiler to 

define only ISO standard features from the library header files, unless you explicitly ask for 

additional features. 

Being able to restrict the library to include only ISO C features is important because ISO C 

puts limitations on what names can be defined by the library implementation, and the GNU 

extensions don’t fit these limitations. 

This unit does not attempt to give you complete details on the differences between ISO C and 

older dialects. It gives advice on how to write programs to work portably under multiple C 

dialects, but does not aim for completeness. 

POSIX (The Portable Operating System Interface) - The ISO/IEC 9945 (aka IEEE 1003) 

standards for operating systems

The GNU library is also compatible with the ISO POSIX family of standards, known more 

formally as the Portable Operating System Interface for Computer Environments (ISO/IEC 

9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived mostly from various 

versions of the Unix operating system. 

The library facilities specified by the POSIX standards are a superset of those required by ISO 

C; POSIX specifies additional features for ISO C functions, as well as specifying new additional 

functions. In general, the additional requirements and functionality defined by the POSIX 

standards are aimed at providing lower-level support for a particular kind of operating system 

environment, rather than general programming language support which can run in many 

diverse operating system environments.

The GNU C library implements all of the functions specified in ISO/IEC 9945-1:1996, the 

POSIX System Application Program Interface, commonly referred to as POSIX.1. The primary 

extensions to the ISO C facilities specified by this standard include file system interface 

primitives, device-specific terminal control functions, and process control functions.

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard (POSIX.2) 

are also implemented in the GNU library. These include utilities for dealing with regular 

expressions and other pattern matching facilities. 

31



Berkeley Unix - BSD and SunOS

The GNU C library defines facilities from some versions of Unix which are not formally 

standardized, specifically from the 4.2 BSD, 4.3 BSD, and 4.4 BSD Unix systems (also known as 

Berkeley Unix) and from SunOS (a popular 4.2 BSD derivative that includes some Unix System 

V functionality). These systems support most of the ISO C and POSIX facilities, and 4.4 BSD 

and newer releases of SunOS in fact support them all.  The BSD facilities include symbolic links, 

the select function, the BSD signal functions, and sockets.

SVID (The System V Interface Description) - The System V Interface Description

The System V Interface Description (SVID) is a document describing the AT&T Unix System V 

operating system. It is to some extent a superset of the POSIX standard.

The GNU C library defines most of the facilities required by the SVID that are not also required 

by the ISO C or POSIX standards, for compatibility with System V Unix and other Unix systems 

(such as SunOS) which include these facilities. However, many of the more obscure and less 

generally useful facilities required by the SVID are not included. (In fact, Unix System V itself 

does not provide them all.The supported facilities from System V include the methods for inter-

process communication and shared memory, the hsearch and drand48 families of functions, 

fmtmsg and several of the mathematical functions. 

XPG (The X/Open Portability Guide) - The X/Open Portability Guide

The X/Open Portability Guide, published by the X/Open Company, Ltd., is a more general 

standard than POSIX. X/Open owns the Unix copyright and the XPG specifies the requirements 

for systems which are intended to be a Unix system. 

The GNU C library complies to the X/Open Portability Guide, Issue 4.2, with all extensions 

common to XSI (X/Open System Interface) compliant systems and also all X/Open UNIX 

extensions. The additions on top of POSIX are mainly derived from functionality available 

in System V and BSD systems. Some of the really bad mistakes in System V systems were 

corrected, though. Since fulfilling the XPG standard with the Unix extensions is a precondition 

for getting the Unix brand chances are good that the functionality is available on commercial 

systems. 

Using the Library
This section describes some of the practical issues involved in using the GNU C library.

Header Files

Libraries for use by C programs really consist of two parts: header files that define types and 

macros and declare variables and functions; and the actual library or archive that contains 

the definitions of the variables and functions. (Recall that in C, a declaration merely provides 

information that a function or variable exists and gives its type. For a function declaration, 

information about the types of its arguments might be provided as well. The purpose of 

declarations is to allow the compiler to correctly process references to the declared variables 

and functions. A definition, on the other hand, actually allocates storage for a variable or says 

what a function does.) 

Systems Programming

32



Unit .1 The C Library and I/O System Call

In order to use the facilities in the GNU C library, you should be sure that your program source 

files include the appropriate header files. This is so that the compiler has declarations of these 

facilities available and can correctly process references to them. Once your program has been 

compiled, the linker resolves these references to the actual definitions provided in the archive 

file. 

Header files are included into a program source file by the `#include’ preprocessor directive. 

The C language supports two forms of this directive; the first, 

  #include “header”

is typically used to include a header file ‘header’ that you write yourself; this would contain 

definitions and declarations describing the interfaces between the different parts of your 

particular application. By contrast, 

  #include <file.h>

is typically used to include a header file `file.h’ that contains definitions and declarations for 

a standard library. This file would normally be installed in a standard place by your system 

administrator. You should use this second form for the C library header files. 

Typically, `#include’ directives are placed at the top of the C source file, before any other code. 

If you begin your source files with some comments explaining what the code in the file does 

(a good idea), put the `#include’ directives immediately afterwards, following the feature test 

macro definition.

The GNU C library provides several header files, each of which contains the type and macro 

definitions and variable and function declarations for a group of related facilities. This means 

that your programs may need to include several header files, depending on exactly which 

facilities you are using. 

Some library header files include other library header files automatically. However, as a matter 

of programming style, you should not rely on this; it is better to explicitly include all the header 

files required for the library facilities you are using. The GNU C library header files have been 

written in such a way that it doesn’t matter if a header file is accidentally included more than 

once; including a header file a second time has no effect. Likewise, if your program needs to 

include multiple header files, the order in which they are included doesn’t matter. 

Compatibility Note: Inclusion of standard header files in any order and any number of times 

works in any ISO C implementation. However, this has traditionally not been the case in many 

older C implementations. 

Strictly speaking, you don’t have to include a header file to use a function it declares; you could 

declare the function explicitly yourself. But it is usually better to include the header file because 

it may define types and macros that are not otherwise available and because it may define 

more efficient macro replacements for some functions. It is also a sure way to have the correct 

declaration. 

33



Macro Definitions of Functions

If we describe something as a function, it may have a macro definition as well. This normally 

has no effect on how your program runs--the macro definition does the same thing as the 

function would. In particular, macro equivalents for library functions evaluate arguments exactly 

once, in the same way that a function call would. The main reason for these macro definitions is 

that sometimes they can produce an inline expansion that is considerably faster than an actual 

function call. 

Taking the address of a library function works even if it is also defined as a macro. This is 

because, in this context, the name of the function isn’t followed by the left parenthesis that is 

syntactically necessary to recognize a macro call. 

You might occasionally want to avoid using the macro definition of a function--perhaps to make 

your program easier to debug. There are two ways you can do this: 

• You can avoid a macro definition in a specific use by enclosing the name of the 
function in parentheses. This works because the name of the function doesn’t 
appear in a syntactic context where it is recognizable as a macro call. 

• You can suppress any macro definition for a whole source file by using the `#undef’ 
preprocessor directive, unless otherwise stated explicitly in the description of that 
facility. 

For example, suppose the header file `stdlib.h’ declares a function named abs with 

  extern int abs (int);

and also provides a macro definition for abs. Then, in: 

  #include <stdlib.h>

int f (int *i) { return abs (++*i); }

the reference to abs might refer to either a macro or a function. On the other hand, in each of 

the following examples the reference is to a function and not a macro. 

  #include <stdlib.h>

int g (int *i) { return (abs) (++*i); }

#undef abs

int h (int *i) { return abs (++*i); }

Since macro definitions that double for a function behave in exactly the same way as the actual 

function version, there is usually no need for any of these methods. In fact, removing macro 

definitions usually just makes your program slower. 

Systems Programming

34



Unit .1 The C Library and I/O System Call

Reserved Names

The names of all library types, macros, variables and functions that come from the ISO C 

standard are reserved unconditionally; your program may not redefine these names. All other 

library names are reserved if your program explicitly includes the header file that defines or 

declares them. There are several reasons for these restrictions: 

• Other people reading your code could get very confused if you were using a 
function named exit to do something completely different from what the standard 
exit function does, for example. Preventing this situation helps to make your 
programs easier to understand and contributes to modularity and maintainability. 

• It avoids the possibility of a user accidentally redefining a library function that 
is called by other library functions. If redefinition were allowed, those other 
functions would not work properly. 

• It allows the compiler to do whatever special optimizations it pleases on calls to 
these functions, without the possibility that they may have been redefined by the 
user. Some library facilities, such as those for dealing with variadic arguments  and 
non-local exits, actually require a considerable amount of cooperation on the part 
of the C compiler, and with respect to the implementation, it might be easier for 
the compiler to treat these as built-in parts of the language. 

In addition to the names documented GNU Library, reserved names include all external 

identifiers (global functions and variables) that begin with an underscore (`_’) and all identifiers 

regardless of use that begin with either two underscores or an underscore followed by a capital 

letter are reserved names. This is so that the library and header files can define functions, 

variables, and macros for internal purposes without risk of conflict with names in user programs. 

Some additional classes of identifier names are reserved for future extensions to the C 

language or the POSIX.1 environment. While using these names for your own purposes right 

now might not cause a problem, they do raise the possibility of conflict with future versions of 

the C or POSIX standards, so you should avoid these names. 

• Names beginning with a capital `E’ followed a digit or uppercase letter may be 
used for additional error code names. 

• Names that begin with either `is’ or `to’ followed by a lowercase letter may be 
used for additional character testing and conversion functions. 

• Names that begin with `LC_’ followed by an uppercase letter may be used for 
additional macros specifying locale attributes. 

• Names of all existing mathematics functions suffixed with `f’ or `l’ are reserved 
for corresponding functions that operate on float and long double arguments, 
respectively. 

• Names that begin with `SIG’ followed by an uppercase letter are reserved for 
additional signal names. 

35



• Names that begin with `SIG_’ followed by an uppercase letter are reserved for 
additional signal actions. 

• Names beginning with `str’, `mem’, or `wcs’ followed by a lowercase letter are 
reserved for additional string and array functions. 

• Names that end with `_t’ are reserved for additional type names. 

In addition, some individual header files reserve names beyond those that they actually define. 

You only need to worry about these restrictions if your program includes that particular header 

file. 

• The header file `dirent.h’ reserves names prefixed with `d_’. 

• The header file `fcntl.h’ reserves names prefixed with `l_’, `F_’, `O_’, and `S_’. 

• The header file `grp.h’ reserves names prefixed with `gr_’. 

• The header file `limits.h’ reserves names suffixed with `_MAX’. 

• The header file `pwd.h’ reserves names prefixed with `pw_’. 

• The header file `signal.h’ reserves names prefixed with `sa_’ and `SA_’. 

• The header file `sys/stat.h’ reserves names prefixed with `st_’ and `S_’. 

• The header file `sys/times.h’ reserves names prefixed with `tms_’. 

• The header file `termios.h’ reserves names prefixed with `c_’, `V’, `I’, `O’, and `TC’; 
and names prefixed with `B’ followed by a digit. 

Feature Test Macros

The exact set of features available when you compile a source file is controlled by which feature 

test macros you define. 

If you compile your programs using `gcc -ansi’, you get only the ISO C library features, unless 

you explicitly request additional features by defining one or more of the feature macros. See 

section `GNU CC Command Options’ in The GNU CC Manual, for more information about 

GCC options.

You should define these macros by using `#define’ preprocessor directives at the top of your 

source code files. These directives must come before any #include of a system header file. It 

is best to make them the very first thing in the file, preceded only by comments. You could 

also use the `-D’ option to GCC, but it’s better if you make the source files indicate their own 

meaning in a self-contained way. 

This system exists to allow the library to conform to multiple standards. Although the different 

standards are often described as supersets of each other, they are usually incompatible 

because larger standards require functions with names that smaller ones reserve to the user 

program. This is not mere pedantry -- it has been a problem in practice. For instance, some 

non-GNU programs define functions named getline that have nothing to do with this library’s 

getline. They would not be compilable if all features were enabled indiscriminately. 

Systems Programming

36



Unit .1 The C Library and I/O System Call

This should not be used to verify that a program conforms to a limited standard. It is insufficient 

for this purpose, as it will not protect you from including header files outside the standard, or 

relying on semantics undefined within the standard. 

Macro: _POSIX_SOURCE 

If you define this macro, then the functionality from the POSIX.1 standard (IEEE Standard 

1003.1) is available, as well as all of the ISO C facilities. 

The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_C_SOURCE to a 

positive integer. 

Macro: _POSIX_C_SOURCE 

Define this macro to a positive integer to control which POSIX functionality is made available. 

The greater the value of this macro, the more functionality is made available. 

If you define this macro to a value greater than or equal to 1, then the functionality from the 

1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990) is made available. 

If you define this macro to a value greater than or equal to 2, then the functionality from the 

1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992) is made available. 

If you define this macro to a value greater than or equal to 199309L, then the functionality from 

the 1993 edition of the POSIX.1b standard (IEEE Standard 1003.1b-1993) is made available. 

Greater values for _POSIX_C_SOURCE will enable future extensions. The POSIX standards 

process will define these values as necessary, and the GNU C Library should support them 

some time after they become standardized. The 1996 edition of POSIX.1 (ISO/IEC 9945-1: 

1996) states that if you define _POSIX_C_SOURCE to a value greater than or equal to 199506L, 

then the functionality from the 1996 edition is made available. 

Macro: _BSD_SOURCE 

If you define this macro, functionality derived from 4.3 BSD Unix is included as well as the ISO 

C, POSIX.1, and POSIX.2 material. 

Some of the features derived from 4.3 BSD Unix conflict with the corresponding features 

specified by the POSIX.1 standard. If this macro is defined, the 4.3 BSD definitions take 

precedence over the POSIX definitions. 

Due to the nature of some of the conflicts between 4.3 BSD and POSIX.1, you need to use a 

special BSD compatibility library when linking programs compiled for BSD compatibility. This 

is because some functions must be defined in two different ways, one of them in the normal 

C library, and one of them in the compatibility library. If your program defines _BSD_SOURCE, 

you must give the option `-lbsd-compat’ to the compiler or linker when linking the program, to 

tell it to find functions in this special compatibility library before looking for them in the normal 

C library. 

Macro: _SVID_SOURCE 

If you define this macro, functionality derived from SVID is included as well as the ISO C, 

37



POSIX.1, POSIX.2, and X/Open material. 

Macro: _XOPEN_SOURCE 

Macro: _XOPEN_SOURCE_EXTENDED 

If you define this macro, functionality described in the X/Open Portability Guide is included. 

This is a superset of the POSIX.1 and POSIX.2 functionality and in fact _POSIX_SOURCE and 

_POSIX_C_SOURCE are automatically defined. 

As the unification of all Unices, functionality only available in BSD and SVID is also included. 

If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more functionality is 

available. The extra functions will make all functions available which are necessary for the X/

Open Unix brand. 

If the macro _XOPEN_SOURCE has the value 500 this includes all functionality described so far 

plus some new definitions from the Single Unix Specification, version 2. 

Macro: _LARGEFILE_SOURCE 

If this macro is defined some extra functions are available which rectify a few shortcomings in 

all previous standards. Specifically, the functions fseeko and ftello are available. Without these 

functions the difference between the ISO C interface (fseek, ftell) and the low-level POSIX 

interface (lseek) would lead to problems. 

This macro was introduced as part of the Large File Support extension (LFS). 

Macro: _LARGEFILE64_SOURCE 

If you define this macro an additional set of functions is made available which enables 32 bit 

systems to use files of sizes beyond the usual limit of 2GB. This interface is not available if the 

system does not support files that large. On systems where the natural file size limit is greater 

than 2GB (i.e., on 64 bit systems) the new functions are identical to the replaced functions. 

The new functionality is made available by a new set of types and functions which replace the 

existing ones. The names of these new objects contain 64 to indicate the intention, e.g., off_t 

vs. off64_t and fseeko vs. fseeko64. 

This macro was introduced as part of the Large File Support extension (LFS). It is a transition 

interface for the period when 64 bit offsets are not generally used (see _FILE_OFFSET_BITS). 

Macro: _FILE_OFFSET_BITS 

This macro determines which file system interface shall be used, one replacing the other. 

Whereas _LARGEFILE64_SOURCE makes the 64 bit interface available as an additional 

interface, _FILE_OFFSET_BITS allows the 64 bit interface to replace the old interface. 

If _FILE_OFFSET_BITS is undefined, or if it is defined to the value 32, nothing changes. The 32 

bit interface is used and types like off_t have a size of 32 bits on 32 bit systems. 

Systems Programming

38



Unit .1 The C Library and I/O System Call

If the macro is defined to the value 64, the large file interface replaces the old interface. I.e., 

the functions are not made available under different names (as they are with _LARGEFILE64_

SOURCE). Instead the old function names now reference the new functions, e.g., a call to 

fseeko now indeed calls fseeko64. 

This macro should only be selected if the system provides mechanisms for handling large files. 

On 64 bit systems this macro has no effect since the *64 functions are identical to the normal 

functions. 

This macro was introduced as part of the Large File Support extension (LFS). 

Macro: _ISOC99_SOURCE 

Until the revised ISO C standard is widely adopted the new features are not automatically 

enabled. The GNU libc nevertheless has a complete implementation of the new standard and 

to enable the new features the macro _ISOC99_SOURCE should be defined. 

Macro: _GNU_SOURCE 

If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1, POSIX.2, BSD, 

SVID, X/Open, LFS, and GNU extensions. In the cases where POSIX.1 conflicts with BSD, the 

POSIX definitions take precedence. 

If you want to get the full effect of _GNU_SOURCE but make the BSD definitions take 

precedence over the POSIX definitions, use this sequence of definitions: 

  #define _GNU_SOURCE

#define _BSD_SOURCE

#define _SVID_SOURCE

Note that if you do this, you must link your program with the BSD compatibility library by 

passing the `-lbsd-compat’ option to the compiler or linker. Note: If you forget to do this, you 

may get very strange errors at run time. 

Macro: _REENTRANT 

Macro: _THREAD_SAFE 

If you define one of these macros, reentrant versions of several functions get declared. Some 

of the functions are specified in POSIX.1c but many others are only available on a few other 

systems or are unique to GNU libc. The problem is the delay in the standardization of the 

thread safe C library interface. 

Unlike on some other systems, no special version of the C library must be used for linking. 

There is only one version but while compiling this it must have been specified to compile as 

thread safe. 

We recommend you use _GNU_SOURCE in new programs. If you don’t specify the `-ansi’ 

option to GCC and don’t define any of these macros explicitly, the effect is the same as 

defining _POSIX_C_SOURCE to 2 and _POSIX_SOURCE, _SVID_SOURCE, and _BSD_SOURCE 

to 1. 

39



When you define a feature test macro to request a larger class of features, it is harmless to 

define in addition a feature test macro for a subset of those features. For example, if you 

define _POSIX_C_SOURCE, then defining _POSIX_SOURCE as well has no effect. Likewise, if 

you define _GNU_SOURCE, then defining either _POSIX_SOURCE or _POSIX_C_SOURCE or 

_SVID_SOURCE as well has no effect. 

Note, however, that the features of _BSD_SOURCE are not a subset of any of the other feature 

test macros supported. This is because it defines BSD features that take precedence over 

the POSIX features that are requested by the other macros. For this reason, defining _BSD_

SOURCE in addition to the other feature test macros does have an effect: it causes the BSD 

features to take priority over the conflicting POSIX features. 

The C Library for Allocation of Storage for Program Data 
The C language supports two kinds of memory allocation through the variables in C programs:

• Static allocation is what happens when you declare a static or global variable. 

• Each static or global variable defines one block of space, of a fixed size. The 
space is allocated once, when your program is started (part of the exec operation), 
and is never freed.

• Automatic allocation happens when you declare an automatic variable, such as 
a function argument or a local variable.  The space for an automatic variable is 
allocated when the compound statement containing the declaration is entered, 
and is freed when that compound statement is exited.

A third important kind of memory allocation, dynamic allocation, is not supported by C 

variables but is available via GNU C Library functions.

Dynamic Memory Allocation

Dynamic memory allocation is a technique in which programs determine as they are running 

where to store some information. You need dynamic allocation when the amount of memory 

you need, or how long you continue to need it, depends on factors that are not known before 

the program runs.

For example, you may need a block to store a line read from an input file; since there is no limit 

to how long a line can be, you must allocate the memory dynamically and make it dynamically 

larger as you read more of the line. Or, you may need a block for each record or each definition 

in the input data; since you can’t know in advance how many there will be, you must allocate a 

new block for each record or definition as you read it.

When you use dynamic allocation, the allocation of a block of memory is an action that the 

program requests explicitly. You call a function or macro when you want to allocate space, and 

specify the size with an argument. If you want to free the space, you do so by calling another 

function or macro. You can do these things whenever you want, as often as you want.

Systems Programming

40



Unit .1 The C Library and I/O System Call

Dynamic allocation is not supported by C variables; there is no storage class dynamic, and  

there can never be a C variable whose value is stored in dynamically allocated space. The only 

way to get dynamically allocated memory is via a system call (which is generally via a GNU 

C Library function call), and the only way to refer to dynamically allocated space is through a 

pointer.

Basic Memory Allocation

The most general dynamic allocation facility is malloc. It allows you to allocate blocks of 

memory of any size at any time, make them bigger or smaller at any time, and free the blocks 

individually at any time (or never). To allocate a block of memory, call malloc. The prototype for 

this function is in ‘stdlib.h’.

Because it is less convenient, and because the actual process of dynamic allocation requires 

more computation time, programmers generally use dynamic allocation only when neither 

static nor automatic allocation will serve. For example, if you want to allocate dynamically 

some space to hold a struct foobar, you cannot declare a variable of type struct foobar whose 

contents are the dynamically allocated space. But you can declare a variable of pointer type 

struct foobar * and assign it the address of the space. Then you can use the operators ‘*’ and 

‘->’ on this pointer variable to refer to the contents of the space:

{

struct foobar *ptr = (struct foobar *) malloc (sizeof (struct foobar));

ptr->name = x;

ptr->next = current_foobar;

current_foobar = ptr;

}

void * malloc (size_t size) Function

This function returns a pointer to newly allocated block size bytes long or a null pointer if the 

block could not be allocated. The contents of the block are undefined; you must initialize it 

yourself. Normally you would cast the value as a pointer to the kind of object that you want to 

store in the block. See an example of doing so, and of initializing the space with zeros using 

the library function memset, below.

struct foo *ptr;

...

ptr = (struct foo *) malloc (sizeof (struct foo));

if (ptr == 0) abort ();

memset (ptr, 0, sizeof (struct foo));

41



You can store the result of malloc into any pointer variable without a cast, because ISO C 

automatically converts the type void * to another type of pointer when necessary. But the cast 

is necessary in contexts other than assignment operators or if you might want your code to run 

in traditional C.

Remember that when allocating space for a string, the argument to malloc must be one plus 

the length of the string. This is because a string is terminated with a null character that doesn’t 

count in the “length” of the string but does need space. For example:

char *ptr;

...

ptr = (char *) malloc (length + 1);

The block that malloc gives you is guaranteed to be aligned so that it can hold any type of data. 

In the GNU system, the address is always a multiple of eight on most systems, and a multiple 

of sixteen on 64-bit systems.

Freeing Memory Allocated with malloc

When you no longer need a block that you got with malloc, use the function free to make the 

block available to be allocated again. The prototype for this function is in ‘stdlib.h’.

void free (void *ptr) Function

The free function deallocates the block of memory pointed at by ptr.

void cfree (void *ptr) Function

This function does the same thing as free. It’s provided for backward compatibility with SunOS; 

you should use free instead.

Freeing a block alters the contents of the block. Do not expect to find any data (such as a 

pointer to the next block in a chain of blocks) in the block after freeing it. Copy whatever you 

need out of the block before freeing it! Here is an example of the proper way to free all the 

blocks in a chain, and the strings that they point to:

struct chain

   {

struct chain *next;

char *name;

   }

void  free_chain (struct chain *chain)

  {

while (chain != 0)

Systems Programming

42



Unit .1 The C Library and I/O System Call

  {

struct chain *next = chain->next;

free (chain->name);

free (chain);

chain = next;

 }

 }

Occasionally, free can actually return memory to the operating system and make 
the process smaller. Usually, all it can do is allow a later call to malloc to reuse the 
space. In the meantime, the space remains in your program as part of a free-list used 
internally by malloc.

There is no point in freeing blocks at the end of a program, because all of the program’s space 

is given back to the system when the process terminates.

Other related Facilities

void * realloc (void *ptr, size_t newsize) Function

The realloc function changes the size of the block whose address is ptr to be newsize.

void * calloc (size_t count, size_t eltsize) Function

This function allocates a block long enough to contain a vector of count elements, each of size 

eltsize. Its contents are cleared to zero before calloc returns.

Conclusion
This unit provided an overview of the GNU C Library. A number of issues were presented 

including the library Standards and Portability, the basics of using the library, and the case of C 

library functions for allocation of storage for program data.

43



    Assessment
If no more space is available, malloc returns a null pointer. You should check the 
value of every call to malloc. Instead, it is useful to write a subroutine that calls 
malloc and reports an error if the value is a null pointer, returning only if the value 
is nonzero. This function is conventionally called xmalloc (see Unit_2_Demos\
xmalloc.c). Study this program.

Demonstrate use of malloc by writing a complete C program based on the 
function provided in Unit_2_Demos\savestring.c which copy a sequence of 
characters into a newly allocated nullterminated string.

Write a subroutine, called realloc, which takes care of the error message as 
xmalloc does for malloc(Refere to question No. 1 above)

Define the function calloc by using malloc.

Activity 2 - File, Directories and Links 

 Introduction

In this section we present the GNU C library’s functions for manipulating files. These functions 

are concerned with operating on the files themselves, rather than on their contents. Among 

the facilities described in this section are functions for examining or modifying directories, 

functions for renaming and deleting files, and functions for examining and setting file attributes 

such as access permissions and modification times.

Activity Details

Examining or Modifying Directories  
Manipulating the working directory

Each process has associated with it a directory, called its current working directory or simply 

working directory that is used in the resolution of relative file names. When you log in and 

begin a new session, your working directory is initially set to the home directory associated 

with your login account in the system user database. You can find any user’s home directory 

using the getpwuid or getpwnam functions.

 Users can change the working directory using shell commands like cd. The functions described 

in this section are the primitives used by those commands and by other programs for 

examining and changing the working directory. 

Prototypes for these functions are declared in the header file `unistd.h’. 

Function: char * getcwd (char *buffer, size_t size) 

Systems Programming

44



Unit .1 The C Library and I/O System Call

The getcwd function returns an absolute file name representing the current working directory, 

storing it in the character array buffer that you provide. The size argument is how you tell the 

system the allocation size of buffer. 

The GNU library version of this function also permits you to specify a null pointer for the buffer 

argument. Then getcwd allocates a buffer automatically, as with malloc. If the size is greater 

than zero, then the buffer is that large; otherwise, the buffer is as large as necessary to hold the 

result. 

The return value is buffer on success and a null pointer on failure. Table 1 defines the errno 

error conditions for the getcwd function.

Table 1. Error condition description for the getcwd function

      

Error condition Meaning

EINVAL The size argument is zero and 

buffer is not a null pointer.

ERANGE The size argument is less than 

the length of the working 

directory name. You need to 

allocate a bigger array and try 

again.

EACCES Permission to read or search 

a component of the file name 

was denied.

Function: char * getwd (char *buffer) 

This is similar to getcwd, but has no way to specify the size of the buffer. The GNU library 

provides getwd only for backwards compatibility with BSD. 

The buffer argument should be a pointer to an array at least PATH_MAX bytes long. In the GNU 

system there is no limit to the size of a file name, so this is not necessarily enough space to 

contain the directory name. That is why this function is deprecated. 

Function: int chdir (const char *filename) 

This function is used to set the process’s working directory to filename. 

The normal, successful return value from chdir is 0. A value of -1 is returned to indicate an error. 

The errno error conditions defined for this function are the usual file name syntax errors, plus 

ENOTDIR if the file filename is not a directory. 

45



Accessing Directories

This section presents the facilities that let you read the contents of a directory file. This is useful 

if you want your program to list all the files in a directory, perhaps as part of a menu. 

The opendir function opens a directory stream whose elements are directory entries. You use 

the readdir function on the directory stream to retrieve these entries, represented as struct 

dirent objects. The name of the file for each entry is stored in the d_name member of this 

structure.  Table 2 presents what you find in a single directory entry, as you might obtain it from 

a directory stream. All the symbols are declared in the header file `dirent.h’.

Table 2:  Format of a directory entry as obtained from a directory stream

Data Type: struct dirent 

This is a structure type used to return information about directory entries. It contains the 

following fields:

Field name Meaning

char d_name[] This is the null-terminated file name component. This is the only field 

you can count on in all POSIX systems.

ino_t d_fileno This is the file serial number. For BSD compatibility, you can also 

refer to this member as d_ino. In the GNU system and most POSIX 

systems, for most files this is the same as the st_ino member that 

stat will return for the file.

unsigned char 

d_namlen

This is the length of the file name, not including the terminating null 

character. Its type is unsigned char because that is the integer type 

of the appropriate size

Systems Programming

46



Unit .1 The C Library and I/O System Call

unsigned char 

d_type

This is the type of the file, possibly unknown. The following 

constants are defined for its value:

Constant Meaning

DT_UNKNOWN The type is unknown. On some systems this is the 

only value returned

DT_REG A regular file.

DT_DIR A directory.

DT_FIFO A named pipe, or FIFO

DT_SOCK A local-domain socket.

DT_CHR A character device.

DT_BLK A block device.

This member is a BSD extension. Each value except DT_UNKNOWN 

corresponds to the file type bits in the st_mode member of struct 

statbuf. These two macros convert between d_type values and 

st_mode values:

Function: int IFTODT (mode_t mode) : This returns the d_type value 

corresponding to mode. 

Function: mode_t DTTOIF (int dirtype) : This returns the st_mode 

value corresponding to dirtype.

This structure may contain additional members in the future.  When a file has multiple 

names, each name has its own directory entry. The only way you can tell that the 

directory entries belong to a single file is that they have the same value for the d_fileno 

field.

File attributes such as size, modification times, and the like are part of the file itself, not 

any particular directory entry.

Opening a Directory Stream

This section describes how to open a directory stream. All the symbols are declared in the 

header file `dirent.h’. 

Data Type: DIR 

The DIR data type represents a directory stream. 

You shouldn’t ever allocate objects of the struct dirent or DIR data types, since the directory 

access functions do that for you. Instead, you refer to these objects using the pointers returned 

by the function specified in Table 3. 

47



Table 3: The opendir function

 

Function: DIR * opendir (const char *dirname) 

The opendir function opens and returns a directory stream for reading the 

directory whose file name is dirname. The stream has type DIR *.

If unsuccessful, opendir returns a null pointer. In addition to the usual file 

name syntax errors, the following errno error conditions are defined for 

this function:

Error condition Meaning

EACCES Read permission is denied for the directory named 

by dirname.

EMFILE The process has too many files open.

ENFILE The entire system, or perhaps the file system 

which contains the directory, cannot support any 

additional open files at the moment. (This problem 

cannot happen on the GNU system.)

The DIR type is typically implemented using a file descriptor, and the opendir function in terms 

of the open function. Directory streams and the underlying file descriptors are closed on exec.

Reading and Closing a Directory Stream

Table 4 presents the functions used to read directory entries from a directory stream, and close 

the stream when you are done with it. All the symbols are declared in the header file `dirent.h’. 

Table 4: Functions used to read directory entries from a directory stream

Function: struct dirent * readdir (DIR *dirstream)

This function reads the next entry from the directory. It normally returns a pointer to a 

structure containing information about the file. This structure is statically allocated and 

can be rewritten by a subsequent call.

Portability Note: On some systems, readdir may not return entries for `.’ and `..’, even 

though these are always valid file names in any directory.

If there are no more entries in the directory or an error is detected, readdir returns a null 

pointer. The following errno error conditions are defined for this function:

Error condition Meaning

EBADF The dirstream argument is not valid.

Systems Programming

48



Unit .1 The C Library and I/O System Call

Function: int closedir (DIR *dirstream) 

This function closes the directory stream dirstream. It returns 0 on success and -1 on 

failure.

 The following errno error conditions are defined for this function:

The following errno error conditions are defined for this function:

Error condition Meaning

EBADF The dirstream argument is not valid.

Random Access in a Directory Stream

Table 5 presents the functions used to reread parts of a directory that you have already read 

from an open directory stream. All the symbols are declared in the header file `dirent.h’. 

Table 5: Functions used to reread parts of a directory that you have already read from an open 

directory stream.

Function: void rewinddir (DIR *dirstream) 

The rewinddir function is used to reinitialize the directory stream 

dirstream, so that if you call readdir it returns information about the first 

entry in the directory again. This function also notices if files have been 

added or removed to the directory since it was opened with opendir. 

(Entries for these files might or might not be returned by readdir if they 

were added or removed since you last called opendir or rewinddir.)

Function: off_t telldir (DIR *dirstream) 

The telldir function returns the file position of the directory stream 

dirstream. You can use this value with seekdir to restore the directory 

stream to that position.

Function: void seekdir (DIR *dirstream, off_t pos)

The seekdir function sets the file position of the directory stream 

dirstream to pos. The value pos must be the result of a previous call to 

telldir on this particular stream; closing and reopening the directory can 

invalidate values returned by telldir.

Working with Multiple file names
In POSIX systems, one file can have many names at the same time. The additional name to the 

existing name (names) is called a hard link to the file. All of the names are equally real, and no 

one of them is preferred to the others.  One file can have names in several directories, so the 

organization of the file system is not a strict hierarchy or tree.  In most implementations, it is not 

possible to have hard links to the same file in multiple file systems.

49



The GNU system supports soft links or symbolic links. This is a kind of “file” that is essentially 

a pointer to another file name. Unlike hard links, symbolic links can be made to directories or 

across file systems with no restrictions. You can also make a symbolic link to a name which is 

not the name of any file (Opening this link will fail until a file by that name is created). Likewise, 

if the symbolic link points to an existing file which is later deleted, the symbolic link continues 

to point to the same file name even though the name no longer names any file. 

The reason symbolic links work the way they do is that special things happen when you try 

to open the link. The open function realizes you have specified the name of a link, reads the 

file name contained in the link, and opens that file name instead. The stat function likewise 

operates on the file that the symbolic link points to, instead of on the link itself. 

By contrast, other operations such as deleting or renaming the file operate on the link itself. 

The functions readlink and lstat also refrain from following symbolic links, because their 

purpose is to obtain information about the link. So does link, the function that makes a hard 

link--it makes a hard link to the symbolic link, which one rarely wants.

Creating Hard Links

To add a name to a file, use the link function. Creating a new link to a file does not copy the 

contents of the file; it simply makes a new name by which the file can be known, in addition to 

the file’s existing name or names. 

The function link reports an error if you try to make a hard link to the file from another file 

system when this cannot be done.  The prototype for the link function is declared in the header 

file `unistd.h’.  Table 6 provides the format of the function link.

Table 6: The format of the function link

Function: int link (const char *oldname, const char *newname) 

The link function makes a new link to the existing file named by oldname, under the new 

name newname.

This function returns a value of 0 if it is successful and -1 on failure. In addition to the usual 

file name syntax errors for both oldname and newname, the following errno error conditions 

are defined for this function:

Error 

condition

Meaning/description

EACCES The directory in which the new link is to be written is not 

writable.

EEXIST There is already a file named newname. If you want to 

replace this link with a new link, you must remove the old link 

explicitly first.

Systems Programming

50



Unit .1 The C Library and I/O System Call

EMLINK There are already too many links to the file named by 

oldname. (The maximum number of links to a file is LINK_

MAX; Well-designed file systems never report this error, 

because they permit more links than your disk could possibly 

hold. However, you must still take account of the possibility 

of this error, as it could result from network access to a file 

system on another machine.

ENOENT The file named by oldname doesn’t exist. You can’t make a 

link to a file that doesn’t exist

ENOSPC The directory or file system that would contain the new link is 

“full” and cannot be extended.

EPERM In the GNU system and some others, you cannot make links 

to directories. many systems allow only privileged users to 

do so. This error is used to report the problem.

EROFS The directory containing the new link can’t be modified 

because it’s on a read-only file system.

EXDEV The directory specified in newname is on a different file 

system than the existing file.

Creating Symbolic Links

 The symlink and readlink functions are used to manupulate symbolic link in files. Prototypes for 

these functions are in `unistd.h’. .  Table 7 describe the format of the function symlink.

Table 7: The description of the function symlink

Function: int symlink (const char *oldname, const char *newname) 

The symlink function makes a symbolic link to oldname named newname.

The normal return value from symlink is 0. A return value of -1 indicates an error. In addition 

to the usual file name syntax errors, the following errno error conditions are defined for this 

function:

Error 

condition

Meaning/description

EEXIST There is already an existing file named newname.

EROFS The file newname would exist on a read-only file system.

ENOSPC The directory or file system cannot be extended to make the 

new link.

EIO A hardware error occurred while reading or writing data on the 

disk.

51



Function: int readlink (const char *filename, char *buffer, size_t size) 

The readlink function gets the value of the symbolic link filename. The file name that the 

link points to is copied into buffer. This file name string is not null-terminated; readlink 

normally returns the number of characters copied. The size argument specifies the 

maximum number of characters to copy, usually the allocation size of buffer.

A value of -1 is returned in case of error. In addition to the usual file name syntax errors, the 

following errno error conditions are defined for this function:

Error 

condition

Meaning/description

EINVAL The named file is not a symbolic link.

EIO A hardware error occurred while reading or writing data on the 

disk.

Conclusion
In this activity we describe the GNU C library’s functions for manipulating files and 
directories. Specifically, functions for examining or modifying directories and working 
with multiple file names were presented.

Systems Programming

52



Unit .1 The C Library and I/O System Call

   Assessment
Read the provided code examples below and apply them to implement a working 
program

i. Here is an example showing how you could implement the behavior of GNU’s 
getcwd (NULL, 0) using only the standard behavior of getcwd: 

char *

gnu_getcwd ()

{

  int size = 100;

  char *buffer = (char *) xmalloc (size);

  while (1)

    {

      char *value = getcwd (buffer, size);

      if (value != 0)

        return buffer;

      size *= 2;

      free (buffer);

      buffer = (char *) xmalloc (size);

    }

}

Note: See section Activity 1.1 above, for information about xmalloc, which is not a 
library function but is a customary name used in most GNU software. 

ii. Here’s a simple program that prints the names of the files in the current working 
directory:

53



#include <stddef.h>

#include <stdio.h>

#include <sys/types.h>

#include <dirent.h>

int

main (void)

{

  DIR *dp;

  struct dirent *ep;

dp = opendir (“./”);

  if (dp != NULL)

    {

      while (ep = readdir (dp))

        puts (ep->d_name);

      (void) closedir (dp);

    }

  else

    puts (“Couldn’t open the directory.”);

  return 0;

}

The order in which files appear in a directory tends to be fairly random. A more 
useful program would sort the entries (perhaps by alphabetizing them) before 
printing them.

Systems Programming

54



Unit .1 The C Library and I/O System Call

iii. If the return value equals size, you cannot tell whether or not there was room to return 

the entire name. So make a bigger buffer and call readlink again. Here is an example: 

char *

readlink_malloc (char *filename)

{

  int size = 100;

  while (1)

    {

      char *buffer = (char *) xmalloc (size);

      int nchars = readlink (filename, buffer, size);

      if (nchars < size)

        return buffer;

      free (buffer);

      size *= 2;

    }

}

Activity 3 - File input/output system calls 

Introduction

C programmers on GNU/LINUX have two sets of input/output functions at their disposal. The 

standard C library provides I/O functions: printf, fopen, and so on.  The Linux kernel itself 

provides another set of I/O operations that operate at a lower level than the C library functions.

Because this module is for people who already know the C language, we’ll assume that you 

have encountered and know how to use the C library I/O functions. Often there are good 

reasons to use Linux’s low-level I/O functions. Many of these are kernel system calls, and 

provide the most direct access to underlying system capabilities that is available to application 

programs. In fact, the standard C library I/O routines are implemented on top of the Linux low-

level I/O system calls. Using the latter is usually the most efficient way to perform input and 

output operations—and is sometimes more convenient, too.

55



Activity Details
Reading and Writing Data 

The first I/O function you likely encountered when you first learned the C language was printf. 

This formats a text string and then prints it to standard output. The generalized version, fprintf, 

can print the text to a stream other than standard output. A stream is represented by a FILE* 

pointer. You obtain a FILE* pointer by opening a file with fopen. When you’re done, you can 

close it with fclose. In addition to fprintf, you can use such functions as fputc, fputs, and fwrite 

to write data to the stream, or fscanf, fgetc, fgets, and fread to read data.

With the Linux low-level I/O operations, you use a handle called a file descriptor instead of 

a FILE* pointer. A file descriptor is an integer value that refers to a particular instance of an 

open file in a single process. It can be open for reading, for writing, or for both reading and 

writing. A file descriptor doesn’t have to refer to an open file; it can represent a connection 

with another system component that is capable of sending or receiving data. For example, a 

connection to a hardware device is represented by a file descriptor, as is an open socket or one 

end of a pipe. Include the header files <fcntl.h>, <sys/types.h>, <sys/stat.h>, and <unistd.h> if 

you use any of the low-level I/O functions described here. 

Opening a File

To open a file and produce a file descriptor that can access that file, use the open call. It takes 

as arguments the path name of the file to open, as a character string, and flags specifying how 

to open it. You can use open to create a new file; if you do, pass a third argument that specifies 

the access permissions to set for the new file. If the second argument is O_RDONLY, the file 

is opened for reading only; an error will result if you subsequently try to write to the resulting 

file descriptor. Similarly, O_WRONLY causes the file descriptor to be write-only. Specifying 

O_RDWR produces a file descriptor that can be used both for reading and for writing. Note 

that not all files may be opened in all three modes. For instance, the permissions on a file 

might forbid a particular process from opening it for reading or for writing; a file on a read-only 

device such as a CD-ROM drive may not be opened for writing.

You can specify additional options by using the bitwise or of this value with one or more flags. 

These are the most commonly used values:

• Specify O_TRUNC to truncate the opened file, if it previously existed. Data 
written to the file descriptor will replace previous contents of the file.

• Specify O_APPEND to append to an existing file. Data written to the file 
descriptor will be added to the end of the file.

• Specify O_CREAT to create a new file. If the filename that you provide to open 
does not exist, a new file will be created, provided that the directory containing 
it exists and that the process has permission to create files in that directory. If the 
file already exists, it is opened instead.

• Specify O_EXCL with O_CREAT to force creation of a new file. If the file already 
exists, the open call will fail.

Systems Programming

56



Unit .1 The C Library and I/O System Call

If you call open with O_CREAT, provide an additional third argument specifying the permissions 

for the new file. For example, the program given in question No. 1 of this activity assessment 

section creates a new file with the filename specified on the command line. It uses the O_EXCL 

flag with open, so if the file already exists, an error occurs. The new file is given read and write 

permissions for the owner and owning group, and read permissions only for others. (If your 

umask is set to a nonzero value, the actual permissions may be more restrictive.)

Closing File Descriptors

When you’re done with a file descriptor, close it with close. In some cases, it’s not necessary 

to call close explicitly because Linux closes all open file descriptors when a process terminates 

(that is, when the program ends). Of course, once you close a file descriptor, you should no 

longer use it. Closing a file descriptor may cause Linux to take a particular action, depending 

on the nature of the file descriptor. For example, when you close a file descriptor for a network 

socket, Linux closes the network connection between the two computers communicating 

through the socket.

Linux limits the number of open file descriptors that a process may have open at a time. Open 

file descriptors use kernel resources, so it’s good to close file descriptors when you’re done 

with them. A typical limit is 1,024 file descriptors per process. You can adjust this limit with the 

setrlimit system call.

Writing Data

Write data to a file descriptor using the write call. Provide the file descriptor, a pointer to a 

buffer of data, and the number of bytes to write. The file descriptor must be open for writing. 

The data written to the file need not be a character string; write copies arbitrary bytes from the 

buffer to the file descriptor. The program given in question No. 2 of this activity assessment 

section appends the current time to the file specified on the command line. If the file doesn’t 

exist, it is created. This program also uses the time, localtime, and asctime functions to obtain 

and format the current time; check out their respective man pages for more information.

The write call returns the number of bytes that were actually written or -1 if an error occurred. 

For certain kinds of file descriptors, the number of bytes actually written may be less than the 

number of bytes requested. In this case, it’s up to you to call write again to write the rest of 

the data. The function given in question No. 3 of this activity assessment section demonstrates 

how you might do this. Note that for some applications, you may have to check for special 

conditions in the middle of the writing operation. For example, if you’re writing to a network 

socket, you’ll have to augment this function to detect whether the network connection was 

closed in the middle of the write operation, and if it has, to react appropriately.

57



Reading Data

The corresponding call for reading data is read. Like write, it takes a file descriptor, a pointer to 

a buffer, and a count. The count specifies how many bytes are read from the file descriptor into 

the buffer. The call to read returns -1 on error or the number of bytes actually read. This may 

be smaller than the number of bytes requested, for example, if there aren’t enough bytes left 

in the file.

The program given in question No. 4 of this activity assessment section provides a 

demonstration of read. The program prints a hexadecimal dump of the contents of the file 

specified on the command line. Each line displays the offset in the file and the next 16 bytes. 

It’s shown printing out a dump of its own executable file.

Moving Around a File

A file descriptor remembers its position in a file. As you read from or write to the file descriptor, 

its position advances corresponding to the number of bytes you read or write. Sometimes, 

however, you’ll need to move around a file without reading or writing data. For instance, you 

might want to write over the middle of a file without modifying the beginning, or you might 

want to jump back to the beginning of a file and re-read it without reopening it.The lseek call 

enables you to reposition a file descriptor in a file. Pass it the file descriptor and two additional 

arguments specifying the new position. 

• If the third argument is SEEK_SET, lseek interprets the second argument as a 
position, in bytes, from the start of the file.

• If the third argument is SEEK_CUR, lseek interprets the second argument as an 
offset, which may be positive or negative, from the current position.

• If the third argument is SEEK_END, lseek interprets the second argument as an 
offset from the end of the file. A positive value indicates a position beyond the 
end of the file.

The call to lseek returns the new position, as an offset from the beginning of the file.

The type of the offset is off_t. If an error occurs, lseek returns -1.You can’t use lseek with some 

types of file descriptors, such as socket file descriptors. If you want to find the position of a 

file descriptor in a file without changing it, specify a 0 offset from the current position—for 

example:

off_t position = lseek (file_descriptor, 0, SEEK_CUR);

Linux enables you to use lseek to position a file descriptor beyond the end of the file. Normally, 

if a file descriptor is positioned at the end of a file and you write to the file descriptor, Linux 

automatically expands the file to make room for the new data. If you position a file descriptor 

beyond the end of a file and then write to it, Linux first expands the file to accommodate 

the “gap” that you created with the lseek operation and then writes to the end of it. This gap, 

however, does not actually occupy space on the disk; instead, Linux just makes a note of how 

long it is.

 

Systems Programming

58



Unit .1 The C Library and I/O System Call

If you later try to read from the file, it appears to your program that the gap is filled with 0 

bytes. Using this behaviour of lseek, it’s possible to create extremely large files that occupy 

almost no disk space. The program lseek-huge given in question No. 5 of this activity 

assessment section does this. It takes as command-line arguments a filename and a target file 

size, in megabytes. The program opens a new file, advances past the end of the file using lseek, 

and then writes a single 0 byte before closing the file.

Note that these magic gaps in files are a special feature of the ext2 file system that’s typically 

used for GNU/Linux disks. If you try to use lseek-huge to create a file on some other type of file 

system, such as the fat or vfat file systems used to mount DOS and Windows partitions, you’ll 

find that the resulting file does actually occupy the full amount of disk space. Linux does not 

permit you to rewind before the start of a file with lseek.

Extracting file information

Using open and read, you can extract the contents of a file. But how about other file 

information? For instance, invoking ls -l displays, for the files in the current directory, such 

information as the file size, the last modification time, permissions, and the owner. The stat call 

is used to obtain this information about a file.

Call stat with the path to the file you’re interested in and a pointer to a variable of type struct 

stat. If the call to stat is successful, it returns 0 and fills in the fields of the structure with 

information about that file; otherwise, it returns -1.

These are the most useful fields in struct stat:

• st_mode contains the file’s access permissions. 

• In addition to the access permissions, the st_mode field encodes the type of the 
file in higher-order bits. See the text immediately following this bulleted list for 
instructions on decoding this information.

• st_uid and st_gid contain the IDs of the user and group, respectively, to which the 
file belongs. 

• st_size contains the file size, in bytes.

• st_atime contains the time when this file was last accessed (read or written).

• st_mtime contains the time when this file was last modified.

These macros check the value of the st_mode field value to figure out what kind of file you’ve 

invoked stat on. A macro evaluates to true if the file is of that type.

59



S_ISBLK (mode) block device

S_ISCHR (mode) character device

S_ISDIR (mode) directory

S_ISFIFO (mode) fifo (named pipe)

S_ISLNK (mode) symbolic link

S_ISREG (mode) regular file

S_ISSOCK (mode) socket

The st_dev field contains the major and minor device number of the hardware device on 

which this file resides. The major device number is shifted left 8 bits; the minor device number 

occupies the least significant 8 bits. The st_ino field contains the inode number of this file. This 

locates the file in the file system.

If you call stat on a symbolic link, stat follows the link and you can obtain the information about 

the file that the link points to, not about the symbolic link itself.

This implies that S_ISLNK will never be true for the result of stat. Use the lstat function if you 

don’t want to follow symbolic links; this function obtains information about the link itself rather 

than the link’s target. If you call lstat on a file that isn’t a symbolic link, it is equivalent to stat. 

Calling stat on a broken link (a link that points to a nonexistent or inaccessible target) results in 

an error, while calling lstat on such a link does not.

If you already have a file open for reading or writing, call fstat instead of stat. This takes a file 

descriptor as its first argument instead of a path. A program given in question No. 1 of this 

activity assessment section presents a function that allocates a buffer large enough to hold the 

contents of a file and then reads the file into the buffer. The function uses fstat to determine 

the size of the buffer that it needs to allocate and also to check that the file is indeed a regular 

file.

Vector Reads and Writes 

The write call takes as arguments a pointer to the start of a buffer of data and the length of that 

buffer. It writes a contiguous region of memory to the file descriptor.

However, a program often will need to write several items of data, each residing at a different 

part of memory. To use write, the program either will have to copy the items into a single 

memory region, which obviously makes inefficient use of CPU cycles and memory, or will have 

to make multiple calls to write.

For some applications, multiple calls to write are inefficient or undesirable. For example, when 

writing to a network socket, two calls to write may cause two packets to be sent across the 

network, whereas the same data could be sent in a single packet if a single call to write were 

possible.

Systems Programming

60



Unit .1 The C Library and I/O System Call

The writev call enables you to write multiple discontiguous regions of memory

to a file descriptor in a single operation. This is called a vector write. The cost of using writev is 

that you must set up a data structure specifying the start and length of each region of memory. 

This data structure is an array of struct iovec elements. Each element specifies one region of 

memory to write; the fields iov_base and iov_len specify the address of the start of the region 

and the length of the region, respectively.

If you know ahead of time how many regions you’ll need, you can simply declare a struct iovec 

array variable; if the number of regions can vary, you must allocate the array dynamically. Call 

writev passing a file descriptor to write to, the struct iovec array, and the number of elements in 

the array. The return value is the total number of bytes written.

The program provided in question No. 1 of this activity assessment section writes its command-

line arguments to a file using a single writev call. The first argument is the name of the file; 

the second and subsequent arguments are written to the file of that name, one on each line. 

The program allocates an array of struct iovec elements that is twice as long as the number of 

arguments it is writing—for each argument it writes the text of the argument itself as well as a 

new line character. Because we don’t know the number of arguments in advance, the array is 

allocated using malloc.

Linux provides a corresponding function readv that reads in a single operation

into multiple discontiguous  regions of memory. Similar to writev, an array of

struct iovec elements specifies the memory regions into which the data will be read from the 

file descriptor.

Relation to Standard C Library I/O Functions

We mentioned earlier that the standard C library I/O functions are implemented on top of 

these low-level I/O functions. Sometimes, though, it’s handy to use standard library functions 

with file descriptors, or to use low-level I/O functions on a standard library FILE* stream. GNU/

Linux enables you to do both.

Activity Details
If you’ve opened a file using fopen, you can obtain the underlying file descriptor using the 

fileno function. This takes a FILE* argument and returns the file descriptor. For example, to 

open a file with the standard library fopen call but write to it with writev, you could use this 

code:

FILE* stream = fopen (filename, “w”);

int file_descriptor = fileno (stream);

writev (file_descriptor, vector, vector_length);

61



Note that stream and file_descriptor correspond to the same opened file. If you call this line, 

you may no longer write to file_descriptor:

fclose (stream);

Similarly, if you call this line, you may no longer write to stream:

close (file_descriptor);

To go the other way, from a file descriptor to a stream, use the fdopen function. This constructs 

a FILE* stream pointer corresponding to a file descriptor. The fdopen function takes a file 

descriptor argument and a string argument specifying the mode in which to create the stream. 

The syntax of the mode argument is the same as that of the second argument to fopen, and 

it must be compatible with the file descriptor. For example, specify a mode of r for a read file 

descriptor or w for a write file descriptor. As with fileno, the stream and file descriptor refer to 

the same open file, so if you close one, you may not subsequently use the other.

 Conclusion

This activity presented how to perform the following I/O operations using low level operations 

(system calls):

• Open a file and create a file descriptor

• Close file descriptors

• Write data to file descriptors

• Read data from file descriptors

• Moving around a file on a file descriptor

Further, the stat system call was discussed to provide a means to extract other information 

associated with a file, along with the writev call used to write multiple discontiguous regions 

of memory to a file descriptor in a single operation. It was noted that in a similar way, the 

corresponding function readv can be used to read in a single operation into multiple 

discontiguous regions of memory.

Finally, the similarity and the conversion from the low level I/O calls to the C Library I/O 

functions and vice versa was demonstrated.

Systems Programming

62



Unit .1 The C Library and I/O System Call

    Assessment
Read the program “write-all” provided below and give a detailed explanation of 
what goes on in the program.

//write-all.c 

ssize_t write_all (int fd, const void* buffer, size_t count)

{

size_t left_to_write = count;

while (left_to_write > 0) {

size_t written = write (fd, buffer, count);

if (written == -1)

/* An error occurred; bail. */

63



return -1;

else

/* Keep count of how much more we need to write. */

left_to_write -= written;

}

/* We should have written no more than COUNT bytes! */

assert (left_to_write == 0);

/* The number of bytes written is exactly COUNT. */

return count;

}

Read the program “read-file.c” provided below and give a detailed explanation of 
what goes on in the program.

//read-file.c - Read a File into a Buffer

#include <fcntl.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

char* read_file (const char* filename, size_t* length)

{

int fd;

struct stat file_info;

char* buffer;

/* Open the file. */

fd = open (filename, O_RDONLY);

/* Get information about the file. */

fstat (fd, &file_info);

*length = file_info.st_size;

/* Make sure the file is an ordinary file. */

Systems Programming

64



Unit .1 The C Library and I/O System Call

if (!S_ISREG (file_info.st_mode)) {

/* It’s not, so give up. */

close (fd);

return NULL;

}

buffer = (char*) malloc (*length);

/* Read the file into the buffer. */

read (fd, buffer, *length);

/* Finish up. */

close (fd);

return buffer;

}

  Unit Summary
In this unit we provided an overview of the GNU C Library, along with a number of issues 

pertaining the GNU C Library including the library Standards and Portability, the basics of using 

the library, and the case of C library functions for allocation of storage for program data.

In addition we describe the GNU C library’s functions for manipulating files and directories. 

Specifically, the functions for examining or modifying directories and working with multiple file 

names were presented.

Lastly, the unit discussed file input/output system calls in GNU/LINUX platform. It explored 

calls for reading and writing data, calls for extracting file information, calls for writing multiple 

discontiguous regions of memory to a file descriptor in a single operation or reading in a single 

operation into multiple discontiguous regions of memory, and highlighted the kernel’s I/O calls 

relation to Standard C Library I/O functions.

  Unit Assessment
  Check your understanding!

  Inter-mediate Programming Exercises 

  Instructions

  See 1 Lab 1: Question 7w

65



Grading Scheme
As guided by the offering Institution Grading Regulations

Answers

mailto:njulumi@gmail.com

Unit Readings and Other Resources
1. Mark Mitchell, Jeffrey Oldham, and Alex Samuel; Advanced Linux 

Programming; Copyright © 2001 by New Riders Publishing; FIRST EDITION: 
June, 2001

2. http://www.acm.uiuc.edu/webmonkeys/book/c_guide/: The C Library 
Reference Guide

3. http://www.delorie.com/gnu/docs/glibc/libc_toc.html: The GNU C Library

Systems Programming

66



Unit 2.Shell Programming and Embedding Assembly in C 

Unit 2.Shell Programming and 
Embedding Assembly in C 
Unit Introduction
The Kernel is the heart of an Operating System (OS). It manages resource, which are the 

facilities available in the OS, such as the facility to store data, print data on printer, memory, file 

management, etc. Kernel decides who will use this resource, for how long and when. It runs 

your programs (or set up to execute binary files). The kernel acts as an intermediary between 

the computer hardware and various programs/application/shell as shown in Figure 1.

               

                         Figure 1: Kernel mediates Hardware to various users

The kernel is a Memory resident portion of the OS. It performs the following task :-

• I/O management

• Process management

• Device management

• File management

• Memory management

67



The computer hardware understands the language of 0’s and 1’s called binary language. In 

early days of computing, instructions to the computer were provided using binary language, 

which is difficult to read and write. 

Operating Systems provides a special program called Shell. Shell accepts instruction or 

commands in English (mostly) and if its a valid command, it is pass to kernel. Shell is a user 

program or the OS environment provided for user interaction. Shell is a command language 

interpreter that executes commands read from the standard input device (keyboard) or from a 

file. Shell is not part of system kernel, but uses the system kernel to execute programs, create 

files etc.

Programming languages also provide a way to instruct the hardware to perform some user 

task through application development. Programs written in Higher-level languages such as C 

and C++ run on nearly all architectures yield higher productivity when writing and maintaining 

code. For occasions when programmers need to use assembly instructions in their programs, 

the GNU Compiler Collection permits programmers to add architecture-dependent assembly 

language instructions to their programs.

Assembly language instructions are architecture-dependent, so, for example, programs using 

x86 instructions cannot be compiled on PowerPC computers. To use them, you’ll require a 

facility in the assembly language for your architecture. However, inline assembly statements 

permit you to access hardware directly and can also yield faster code. An asm instruction 

allows you to insert assembly instructions into C and C++ programs. Observe that unlike 

ordinary assembly code instructions, asm statements permit you to specify input and output 

operands using C syntax

Unit Objectives
Upon completion of this unit you should be able to:

• Define the shell  and assembly inlining concepts

• Make use of the shell to perform different user/OS task

• Explain the process of writing shell programs and shell programming constructs

• Explain the techniques of mixing assembly instructions with C code

• Make use of shell programming/shell scripting for automating different system 
tasks.

• Write simple C programs embedded with assembly instructions to speed up 
instructions processing 

Systems Programming

68



Unit 2.Shell Programming and Embedding Assembly in C 

  Key Terms
Shell:A command language interpreter that executes commands 
read from the standard input device (keyboard) or from a file.

Shell program/Script:The shell interprets user commands, which 
are either directly entered by the user, or which can be read 
from a file called the shell script or shell program. Shell scripts 
are interpreted, not compiled. The shell reads commands from 
the script line per line and searches for those commands on 
the system, while a compiler converts a program into machine 
readable form, an executable file - which may then be used in a 
shell script.

Assembly language:Assembly language is a low-level 
programming language for a computer or other programmable 
device specific to a particular computer architecture in contrast 
to most high-level programming languages, which are generally 
portable across multiple systems

High-level language:A Programming Language such as C/C++ 
that supports system development at a high level of abstraction, 
thereby freeing the developer from keeping in his head lots of 
details that are irrelevant to the problem at hand.

Kernel:The kernel is the central module of an operating system. 
It is the part of the operating system that loads first, and it remains 
in main memory

Operating System:Software that manages computer hardware 
and software resources and provides common services for 
computer programs

Learning Activities

Activity 1 - Shell Basics

Introduction 

Several shells are available in Linux/Unix OS including BASH, CSH, KSH and TCSH as detailed 

in Table 1. To find all available shells in your system type following command: 

$ cat /etc/shells. Note that each shell does the same job, but each understand different 

command syntax and provides different built-in functions.

     

69



Table 1: Some common shells in Linux/Unix OS environment

Shell Name Developed by Where Remark 

BASH ( Bourne-

Again SHell )

Brian Fox and 

Chet Ramey

Free Software 

Foundation

Most common shell in Linux. 

It’s Freeware shell.

CSH (C SHell) Bill Joy University of 

California (For 

BSD)

The C shell’s syntax and usage 

are very similar to

the C programming language.

KSH (Korn 

SHell)

David Korn AT & T Bell Labs --

TCSH See the man 

page.

Type $ man tcsh

-- TCSH is an enhanced but 

completely compatible 

version of the Berkeley UNIX 

C shell (CSH).

MS-DOS provides a shell named COMMAND.COM which is also used for same purpose, but 

it’s not as powerful as the Linux/Unix shells!

Any shell reads command from user (via Keyboard or Mouse) and tells OS what users want. If 

we are giving commands from keyboard it is called command line interface (Usually in-front 

of $ prompt for Linux/Unix OS.  The prompt symbol, however, depend upon your shell and 

environment that is set by System Administrator, therefore you may get different prompt).

 To find the current shell in Linux/Unix type following command:  $ echo $SHELL 

Normally shells are interactive. That means a shell accept command from user (via keyboard) 

and execute it. But if you need to provide a sequence of two or more commands, you can 

store this sequence of commands to a text file and tell the shell to execute the text file instead 

of entering one command at a time. This is known as shell program/script. A Shell program/

script is a series of command written in plain text file. Shell scripts are just like batch files in 

MS-DOS but have more power than the MS-DOS batch file.

A  Shell Script can take input from user, file and output them on screen. It is Useful to 

create own commands and save time, automate some task of day today life, also System 

Administration part can be also automated.

In this unit we will use the bash shell.

Systems Programming

70



Unit 2.Shell Programming and Embedding Assembly in C 

Activity Details
What does the shell do

In Linux/Unix, the shell is separate from the OS (change look and feel). The shell reads and 

executes commands

• Some  handled  by the shell itself (pwd, echo,…)

• some are programs stored in some directory (look in directories in PATH).  Start a 
subshell to execute these

The shell provides support for better interaction with the computer/OS (command history, 

editing, configuration). The shell also supports scripting (is a programming language)

Executing a Command

After reading a command, the shell may do some processing (see wildcards, etc in the 

syntax description that follows), then it must find a program to execute the command. Some 

commands are executed directly by the shell. Other commands are executed by separate 

programs. These are found by looking in a list of directories for programs with the appropriate 

name. The shell searches directories in the PATH variable. A hash table is used to make the 

search fast. You can add new commands simply by adding new programs (a program can be 

any executable file including scripts – refer to Linux/Unix permissions) to directories in the 

PATH. You can modify/add directories in the PATH.

Finding out about Commands

type – tells you if a command is a built-in, an alias, or a program (external to the shell)

which – tells in which directory a utility is located

help – displays information about built-in commands (it is a builtin itself)

info bash – a good place to read about the BASH shell

For example:

$ which echo

/bin/echo

$ type -a echo

echo is a shell builtin

echo is /bin/echo

$ help echo # help provides information on builtin commands

echo: echo [-neE] [arg ...]

71



Output the ARGs. If -n is specified, the trailing newline is suppressed. If the -e option is given, 

interpretation of the following backslash-escaped characters is turned on:

\a alert (bell)

\b backspace

\c suppress trailing newline

\E escape character

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\num the character whose ASCII code is NUM (octal).

You can explicitly turn off the interpretation of the above characters with the -E option.

Initialisation Files

Commands and variables placed in initialization files are read when shell is started. If variables 

are placed in system-wide init files, they are made available to every shell. Customizations must 

be exported to be available. Commands and aliases cannot be exported so must be placed in 

user-specific init  files.

i. /etc/profile - System-Wide Initialization File

Read first by shell. The tasks it accomplishes includes:

• Sets and exports variables:  PATH, TERM, PS1, etc.

• Displays contents of /etc/motd (msg of the day)

• Sets default file creation permissions (umask)

ii. User-specific initialisation

If the shell is a login shell, it looks for one of the following files (in order)

• ~/.bash_profile

• ~/.bash_login

• ~/.profile

Systems Programming

72



Unit 2.Shell Programming and Embedding Assembly in C 

If it is a non-login interactive shell, it reads the file

• ~/.bashrc

iii. Other customizations

• PS1 – prompt

• PATH – add to the search path

• Set shell options

o noclobber

o ignoreeof

o command-line editing option (vi or emacs)

o See the .bashrc file for examples.

Shell Variables

The shell keeps track of a set of parameter names and values. Some of these parameters 

determine the behavior of the shell. We can access these variables to

• set new values for some to customize the shell.

• find out the value of some to help accomplish a task.

Examples of shell variables in sh / ksh / bash:

Shell variable Purpose

PWD current working directory

PATH list of places to look for 

commands

HOME home directory of user

MAIL where your email is stored

TERM what kind of terminal you have

HISTFILE where your command history 

is saved

73



Displaying Shell Variables

Prefix the name of a shell variable with “$” to dereference.  The echo command will do:

echo $HOME

echo $PATH

You can use these variables on any command line:

ls -al $HOME

Setting Shell Variables

You can change the value of a shell variable with an assignment command (this is a shell builtin 

command):

HOME=/etc

PATH=/usr/bin:/usr/etc:/sbin

NEWVAR=”avu avu avu”

Note the lack of spaces around the ‘=’

export

Used to export a variable and make it available to subshells. Value passed in and changes 

made to a value in the subshell do not persist in the caller. Subshell is created whenever a 

script or a program is run and inherits parent shell’s exported variables.

PATH

Each time you give the shell a command line it does the following:

• Checks to see if the command is a shell built-in.

• If not - tries to find a program whose name (the filename) is the same as the 
command.

The PATH variable tells the shell where to look for programs (non built-in commands).

For example:

$ echo $PATH

~/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/

usr/games:.

$ PATH=${PATH}:/home/avu

$ echo $PATH

~/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/

usr/games:.:/home/avu

Systems Programming

74



Unit 2.Shell Programming and Embedding Assembly in C 

The PATH is a list of “:” delimited directories. The PATH is a list and a search order. You can add 

stuff to your PATH by changing the shell startup file.

Notes about PATH:

If you do not have “.” in your PATH, commands in your current directory will not be found. You 

may or may not want to add “.” to your PATH. If you do not and want to execute a command 

in the current directory 

 ./command

The PATH is searched sequentially; the first matching program is executed. Beware of naming 

your executables test as there is another program called test and this may be executed when 

you enter 

test

set command 

The set (shell builtin) command with no parameters will print out a list of all the shell variables. 

Some common options:

• noclobber – Keeps mv, cp, redirection from deleting an existing file

• -o vi (or -o emacs) – sets command-line editing mode

• ignoreeof – ctrl-D won’t exit the shell

$PS1 and $PS2

The PS1 shell variable is your command line prompt. The PS2 shell variable is used as a prompt 

when the shell needs more input (in the middle of processing a command). By changing PS1 

and/or PS2 you can change the prompt. Bash supports some fancy stuff in the prompt string:

\t is replace by the current time

\w is replaced by the current directory

\h is replaced by the hostname

\u is replaced by the username

\n is replaced by a newline

Example bash prompt:

~ echo $PS1

======= [\h] - \t =======\n\w

You can change your prompt by changing PS1:

PS1=”Yes Master? “

75



To make changes stick, i.e., if you want to tell the shell (bash) to always use the prompt “Yes 

Master ?”, you need to store the change in a shell startup file. For bash - change the file 

~/.bashrc.

i. SHELL

The SHELL variable holds the path of the login shell.

ii. HOME

The HOME variable contains the PATH to your home directory. When you use cd command 

with no arguments, the command uses the value of the HOME variable as the argument.

echo $HOME

/home/avu

A.Metacharacters

Shell metacharacters are characters that are handled specially by the shell. Below is an 

(incomplete) list of shell metacharacters:

• >  >>  <  <<  |  Command redirection, pipe

• *  []  ?  {}  File specification

• ;  &  ||  &&  () Command Sequencing

• “, ‘ Grouping Text
o Double quotes and single quotes indicates that the 
enclosed text is to be treated as a  unit, not as a group of words.

#  Commenting 

o Rest of line after these characters is ignored 

• \ (backslash) – the escape character
o  Indicates that the character immediately following the 
backslash is to be treated literally.To remove a file named 

“#bogus” you can use the backslash

rm \#bogus

B.Aliases

Commands can be aliased (renamed) to alter their behavior. A common use of aliases is to add 

options to the default behavior of certain commands (e.g. ls, rm, mv, …). It is common practice 

to alias rm to prompt the user to make sure that the specified files should be removed. This 

is especially important since you can remove all files with (see wildcards)  rm *. To see current 

aliases, use the alias command. This can also be used to set new aliases.

Systems Programming

76



Unit 2.Shell Programming and Embedding Assembly in C 

Create an alias using the builtin command alias name[=value]

• You should usually enclose value in quotes.

• no spaces around the ‘=’

• Without a value, alias prints out the alias associated with name
For example :

$alias dir=“ls”

$alias ls=“ls -CF”

$dir

       Output same as for “ls -CF”

C.Variable Substitution

Shells support the use of variables. A variable is a name that is bound to a value. To set a 

variable (in Bash) just enter name=value (No spaces around ‘=’). To see the settings of all 

variables just enter “set”. To kill a variable: unset name.

When processing a command, variable substitution occurs. A variable in a command is flagged 

by a dollar sign prefix “$”.

$ echo My shell is $SHELL

My shell is /bin/bash

echo writes out its arguments after substitution is performed.

Variable substitution will occur within double quotes

$ echo “My shell is $SHELL”

My shell is /usr/local/bin/tcsh

Substitution does not occur within single quotes.

 ‘$ echo ‘My shell is $SHELL’

My shell is $SHELL

When the usage of a variable name is not clear, enclose it within braces ${name}

$ prefix=cs333

$ suffix=.pdf

$ echo $prefix03$suffix

.pdf

$ echo ${prefix}03${suffix}

Cs33303.pdf

77



This occurs when constructing file names in script files.

Many programs use shell variables (also called environmental variables) to get configuration

information.

For example:

• PRINTER is used by printing commands to determine the default printer.

• TERM is used by programs (e.g., vi, pine) to determine what type of terminal is 
being used.

• VISUAL is used by network news programs, etc., to determine what editor to use.

D.Command Substitution

Command substitution allows the output (stdout) of a command to replace the command 

name. There are two forms:

The original Bourne: `command`

The Bash (and Korn) extension: $(command)

The output of the command is substituted in:

$ echo $(ls)

    foo fee file?

$ echo “Today is $(date ‘+%A %d %B %Y’)”

    Today is Thursday 30 September 2014

E.Strong quoting – Single quotes

Inhibits all substitution, and the special meaning of metacharacters:

$ echo ‘$USER is $USER’

$USER is $USER

$ echo ‘today is `date`’

today is `date`

$ echo ‘No background&’

No background&

$ echo ‘I said, “radio!”’

I said, “radio !”

Systems Programming

78



Unit 2.Shell Programming and Embedding Assembly in C 

F.Weak quoting – double quotes

Allows command and variable substitution. Inhibits special meaning of all other metacharacters 

:

$ echo “My name is $USER &”

My name is avu &

$ echo “\$2.00 says `date`”

$2.00 says Sun Jan 15 01:43:32 EST 200

G.Command Execution

Sometimes we need to combine several commands. There are four formats for combining 

commands into one line: sequenced, grouped, chained, and conditional. 

A sequence of commands can be entered on one line. Each command must be separated from 

its predecessor by semicolon. There is no direct relationship between the commands.

command1; command2; command3

Using grouped commands  we can apply the same operation to the group.  Commands are 

grouped by placing them into parentheses and  are run in a subshell.

For example:

echo “Month” > file; cal 10 2000 >> file

(echo “Month” ; cal 10 2000 ) > file

With conditional commands we can combine two or more commands using conditional 

relationships AND (&&) and OR (||). If we AND two commands, the second is executed

only if the first is successful. If we OR two commands, the second is executed only of the first 

fails. 

For example : 

cp file1 file2 && echo “Copy successful”

cp file1 file2 || echo “Copy failed”

Shell Syntax

A.Comments - #

# This is a comment

ls # list the files in the current directory

B.Line continuation - \

$echo A long \

> line

79



C.Command separator  - ;  

You can list more than one command per line separated by ;

ls ; who

D.Pathname separator - /

cd /home/avu

E.Wildcards (globbing), and pathname expansion

*   - match any string (including empty)

?  - match any single character

[set]   - match characters listed in set (can be range)

[!set]  - match any character not given in set

For example:

 ls *.c

 ls *.?

 ls *.[Hh][Tt][Ll]

ls [a-z]

F.File redirection and pipes

 <  - redirect input from specified source

 >  - redirect output to specified source

 >> - redirect output and append to specified source

 |  - pipe the output from one command to the input to the next

For example:

grep word < /usr/dict/words

 ls > listing

 ls >> listing

 ls -l| wc -l

G.Stderr

Note that file redirection of standard output [stdout] does not include error messages, which 

go to standard error [stderr] (when you are in a terminal session, both stdout and stderr go to 

the screen; however, when you redirect stdout to a file, stderr still goes to the screen). stdout 

is designated by the file descriptor 1 and stderr by 2 (standard input is 0). To redirect standard 

error use 2>

Systems Programming

80



Unit 2.Shell Programming and Embedding Assembly in C 

 ls filenothere > listing 2> error

 ls filenothere 2>&1 > listing  # both stdout and stderr redirected 

to listing

H.Background jobs

The & operator runs command in the background.

grep ‘we.*’< /usr/word/dict > wewords &

This runs the grep command in the background – you immediately get a new prompt and can 

continue your work while the command is run.

 jobs is a builtin command. Lists active jobs (stopped, or running in the background). Also see 

the command ps. kill will take a PID (see ps) or jobspec (see jobs)

Conclusion
In this activity we presented the basics of Unix/Linux shell to familiarize you with shell 

environment.

  Assessment 
   Practise all the examples used in this activity.

Activity 2 – Shell Programming

Introduction

A.What is A Script? 

A script is a small program that is executed by the shell. The script is a text file which will 

contain:

• Shell commands you normally use.

• Shell flow control constructs (e.g., if-then-else, etc.)

• A heavier use of variables than you normally would use from the command line. 

B.Why Write Scripts? 

Any task you do (by hand) more than twice should probably be wrapped into a script. 

Sequences of operations which you perform often can be placed into a script file and  then 

executed like a single command. For example, renaming all files of the form

Cs333I*.ppt to cs333I*n.ppt requires a mv command for each file.

The Unix/Linux shells are very powerful, but there are some things that they do not do well.

81



C.Shell scripting - Why Not? 

Resource-intensive tasks, especially where speed is a factor, complex applications, where 

structured programming is a necessity, mission-critical applications upon which you are betting 

the ranch, or the future of the company, situations where security is important, where you need 

to protect against hacking. Project consists of subcomponents with interlocking dependencies. 

Extensive file operations required (Bash is limited to serial file access, and that only in a 

particularly clumsy and inefficient line-by-line fashion). Need to generate or manipulate 

graphics or GUIs. Need direct access to system hardware. Need port or socket I/O. Need to 

use libraries or interface with legacy code.

Activity Details

Getting started with Scripting
A.Creating a Script

Let’s create a shell script to give us information about the system. We create the script using a 

text editor.  Let’s call the file “status”.

#!/bin/bash

uptime

users

Be sure to insert an “enter” after the last line before you exit the editor.

B.Running a Script

To execute the shell we can do

$ bash status

10:37 up 23 days, 23:54, 14 users,

load average …

afjhj billc …

We can also execute the file as a command if the appropriate execute access is granted.

$ ./status

bash: ./status: Permission denied

$ chmod +x status

$ ./status # Works correctly.

Systems Programming

82



Unit 2.Shell Programming and Embedding Assembly in C 

C.#! – “sha-bang”

Not needed if bash kicks off the script, but…

Shells look for “#!” at the very beginning of the file. It is followed by the program

(interpreter) that will read this file:

 #!/bin/bash

 #!/usr/bin/python

# this is a Python program. Bash  doesn’t read it. Gives it right

# to the Python interpreter.

Conditional Expressions

To perform ifs and whiles we need to be able to construct conditional expressions. A 

conditional expression is one that evaluates to true or false depending on its operands. A 

process’ return value of 0 is taken to be true ; any nonzero value is false.

A.test - Conditional Expressions

Actually test is a disk utility. [ ] is its shorthand. It provides for a great many tests and is available 

to all shells.

test expression

or

[ expression ]  - Separate expression from brackets spaces

test returns an exit status of zero (success) if the expression evaluates to true. test uses a variety 

of operators.  Unary file operators can test various file properties. Here are just a few:

 -e True if file exists

 -f True if file is a regular file

 -d True if file is a directory

 -w True if file exists and is writable

 -O True if I own the file

For example :

if  [ -e ~avu/public_html ] ; then

                 echo “Avu has a public web directory”

fi

83



B.[] – file and string operators

• Binary file operators “file1 op file2”

-nt True is file1 is newer than file2

-ot True is file1 is older than file2

-ef True if file1 and file2 refer to the same inode

• Unary string operators “op string”

-z True if string is of zero length

-n True if string is not of zero length

-l Returns length of string

For example :

if [ -z “$myVar” ] ; then

echo “\$myVar has null length”

fi

C.[] – string operators

These compare lexical order

 == != < > <= >=

Note, < > are file redirection. Escape them

For example :

if [ “abc” != “ABC” ] ; then

echo ‘See. Case matters.’ ; fi

if [ 12 \< 2 ] ; then

echo “12 is less than 2?” ; fi

D.[] – arithmetic operators

Work only for integers.

Binary operators:

-lt -gt -le -ge -eq -ne

For example :

if [ 2 –le 3 ] ; then ;echo “cool!” ; fi

x=5

Systems Programming

84



Unit 2.Shell Programming and Embedding Assembly in C 

if [ “$x” –ne 12 ] ; then

echo “Still cool” ; fi

E.[] – Logical Operators

Logical expression tools

• ! expression  - Logical not (i.e., changes sense 

of expression)

• e1 -a e2 True if both expressions are true.

• e1 -o e2 True if e1 or e2 is true.

• \( expression \) Works like normal parentheses 

for expressions; use spaces around the expression.

For example :

test -e bin -a -d /bin is true

[ -e ~/.bashrc -a ! -d ~/.bashrc ] && echo

True

F.[[ test ]]

Bash added [[]] for more C-like usage:

if [[ -e ~/.bashrc && ! –d ~/.bashrc ]]

then

echo “Let’s parse that puppy”

fi

if [[ -z “$myFile” || ! –r $myFile ]]

…

It’s a built-in. Why sometimes quote $myFile, sometimes not (it’s usually a good idea to do so)?

Arithmetic Expressions

Bash usually treats variables as strings. You can change that by using the arithmetic expansion 

syntax: (( arithmeticExpr )). The notation  (()) is a shorthand for the let builtin statement.

$ x=1

$ x=x+1  # “x+1” is just a string

echo $x

x+1

Note, $[] is deprecated

85



$ x=1

$ x=$x+1 # still just a string

$ echo $x

1+1

Closer, but still not right.

$ x=1

$ (( x=x+1 ))

$ echo $x

2

Finally!

 If statement

A.Sample : Basic conditional if .. then

#!/bin/bash

if [ “$1” = “foo” ] ; then

echo expression \

evaluated as true

fi

B.Sample : Basic conditional  if .. then ... else

#!/bin/bash

if [ “$1” = “foo” ]

then

echo ‘First argument is “foo”’

else

echo ‘First arg is not “foo”’

fi

C.Sample: Conditionals with variables

#!/bin/bash

T1=”foo”

T2=”bar”

if [ “$T1” == “$T2” ] ; then

Systems Programming

86



Unit 2.Shell Programming and Embedding Assembly in C 

echo expression evaluated as true

else

echo expression evaluated as false

fi

Always quote variables in scripts!

D.Checking return value of a command

if diff “$fileA” “$fileB” > /dev/null

then

echo “Files are identical”

else

echo “Files are different”

fi

Case  statement

case $opt in

a ) echo “option a”;;

b ) echo “option b”;;

c ) echo “option c”;;

\? ) echo \

 ‘usage: alice [-a] [-b] [-c] args...’

exit 1;;

esac

Special Variables

$# the number of arguments

$* all arguments

$@ all arguments (quoted individually)

$? return value of last command executed

$$ process id of shell 

$HOME, $IFS, $PATH, $PS1, $PS2

87



Scripts and Arguments

Scripts can be started with parameters, just like commands

aScript arg1 arg2 …

The scripts can access these arguments through shell variables:

 “$n” Is the value of the nth parameter.  The command is parameter 

zero

 “$#” Is the number of parameters entered.

 “$*” Expands as a list of all the parameters entered except the 

command.

Let’s quickly write a script to see this:

(this first line is a quick and dirty way to write a file)

$ cat > xx # cat reads from stdin if no file specified

echo $0

echo $#

echo $1 $2

echo $*

C-d  # Control-D is the end of file character.

$ chmod +x xx  #The file xx is now an executable shell script.

$ ./xx a b c #Execute script with three parameters

./xx

3

a b

a b c

$ xx #Execute script with no parameter

./xx

0

Unspecified parameters expand as empty strings (i.e.., as nothing)

Systems Programming

88



Unit 2.Shell Programming and Embedding Assembly in C 

Loops in Scripts 

The for loop is a little bit different from other programming languages. Basically, it let’s you 

iterate over a series of ‘words’ within a string. The while executes a piece of code if the 

control expression is true, and only stops when it is false (or a explicit break is found within the 

executed code. The until loop is almost equivalent to the while loop, except that the code is 

executed while the control expression evaluates to false.

A.For Loop

i.For loop : Example 1

$ for x in 1 2 a; do

> echo $x

> done

1

2

a

ii.For loop : Example 2

$ for x in *; do

> echo $x

> done

bin

mail

public_html

 …

iii.For loop : Example 3

#!/bin/bash

for i in $(cat list.txt) ; do

echo item: $i

done

89



iv.For loop : Example 4

#!/bin/bash

for (( i=0; i<10; ++i )) ; do

echo item: $i

done

B.while loop

i.while loop: Example 1

COUNTER=0

while [ $COUNTER -lt 10 ] ; do

echo The counter is $COUNTER

let COUNTER=COUNTER+1

done

ii.while loop: Example 2

COUNTER=0

while (( COUNTER < 10 )) ; do

echo The counter is $COUNTER

(( COUNTER = COUNTER+1 ))

Done

C.until loop

until loop: Example 1

#!/bin/bash

COUNTER=20

until [ $COUNTER -lt 10 ]

do

echo COUNTER $COUNTER

let COUNTER-=1

done

Systems Programming

90



Unit 2.Shell Programming and Embedding Assembly in C 

D.Example : using loops to renaming files

Goal: Rename all the files of the form cs333l*.ppt to cs333l*.exe where * should be 02, 03 … 

10, using the for loop.

Solution 1:

for n in 02 03 04 05 06 07 08 09 10; do

mv cs265l$n.ppt cs265l$n.exe

done

Solution 2:

for (( n=2; n<10; ++i )) ; do

mv cs333l0$n.ppt cs333l0$n.exe

done

mv cs333l10.ppt cs333l10.exe

Renames cs333l02.ppt to cs333l02.exe, cs333l03.ppt to cs333l03.exe, 

etc.

E.Loop Control statements

break - terminates the loop

continue - causes a jump to the next iteration of the loop

F.Debugging Tip

If you want to watch the commands actually being executed in a script file, insert the line

“set -x” in the script.

set -x

for n in *; do

echo $n

done

       Will display the expanded command before executing it.

+ echo bin

bin

+ echo mail

mail

...

91



Functions

As in almost any programming language, you can use functions to group pieces of code in a 

more logical way or practice the divine art of recursion. Declaring a function is just a matter of 

writing function:

my_func { my_code }.

Calling a function is just like calling another program, you just write its name.

A.Variables scope example

#!/bin/bash

HELLO=Hello     #variable HELLO with program scope

function hello {

local HELLO=World      #variable HELLO with local scope

echo $HELLO

}

$ echo $HELLO

$ hello

$ echo $HELLO

B.Functions with parameters : Example

#!/bin/bash

function quit {

echo ‘Goodbye!’

exit

}

function hello {

echo “Hello $1”

}

for name in Godfrey Justo;

do

hello $name

done

quit

Output:

Systems Programming

92



Unit 2.Shell Programming and Embedding Assembly in C 

Hello Godfrey

Hello Justo

Goodbye

C.Parameter Expansion

${parameter:-word} -  Use Default Values.

${parameter:=word} -  Assign Default Values.

${parameter:?word} -  Display Error if Null or Unset.

${parameter:+word} -  Use Alternate Value.

D.More Parameter Expansion

We can remove parts of a value:

Parameter expansion Purpose

${param#pattern} removes shortest (#) or longest (##) 

leading pattern, if there’s a match
${param##pattern}

${param%pattern} removes shortest(%) or longest (%) 

trailing pattern, if match
${param%%pattern}

             pattern is expanded just as in pathname expansion (globbing) - *, ?, []

Furthermore we can

 find the length of a string: echo ${#foo}

 extract substrings: echo ${foo:2:3}

 perform Regex search and replace.

For more details see the Bash manpage.

93



E.Parameter Expansion - Example 

$ foo=j.i.c

$ echo ${foo#*.}

i.c

$ echo ${foo##*.}

c

$ echo ${foo%.*}

j.i

$ echo ${foo%%.*}

j

Conclusion
This activity presented the process of writing and executing shell scripts, language constructs 

and highlighted the different features found in Unix/Linux shell programming/scripting. 

  Assessment
   1. Practise the examples used in this activity

Activity 3 - Inline Assembly Code 

Introduction

Higher-level languages such as C and C++ run on nearly all architectures and yield higher 

productivity when writing and maintaining code. For occasions when programmers need to use 

assembly instructions in their programs, the GNU Compiler Collection permits programmers 

to add architecture-dependent assembly language instructions to their programs. GCC’s inline 

assembly statements should not be used indiscriminately. Assembly language instructions are 

architecture-dependent, so, for example, programs using x86 instructions cannot be compiled 

on PowerPC computers. To use them, you’ll require a facility in the assembly language for your 

architecture. However, inline assembly statements permit you to access hardware directly and 

can also yield faster code. 

An asm instruction allows you to insert assembly instructions into C and C++ programs. For 

example, this instruction 

asm (“fsin” : “=t” (answer) : “0” (angle)); 

is an x86-specific way of coding this C statement:

answer = sin (angle);

Systems Programming

94



Unit 2.Shell Programming and Embedding Assembly in C 

The expression sin (angle) is usually implemented as a function call into the math library, but if 

you specify the -O1 or higher optimization flag, GCC is smart enough to replace the function 

call with a single fsin assembly instruction.

Observe that unlike ordinary assembly code instructions, asm statements permit you to specify 

input and output operands using C syntax. To read more about the x86 instruction set, which 

we will use in this section, see http://developer.intel.com/design/pentiumii/manuals/ and 

http://www.x86-64.org/documentation. 

Although asm statements can be abused, they allow your programs to access the computer 

hardware directly, and they can produce programs that execute quickly. You can use them 

when writing operating system code that directly needs to interact with hardware. For example, 

/usr/include/asm/io.h contains assembly instructions to access input/output ports directly. 

The Linux source code file /usr/src/linux/arch/i386/kernel/process.s provides another example, 

using hlt in idle loop code. See other Linux source code files in /usr/src/linux/arch/ and /usr/src/

linux/drivers/.

Assembly instructions can also speed the innermost loop of computer programs. For example, 

if the majority of a program’s running time is computing the sine and cosine of the same angles, 

this innermost loop could be recoded using the fsincos x86 instructions (Algorithmic or data 

structure changes may be more effective in reducing a program’s running time than using 

assembly instructions). See, for example, /usr/include/bits/mathinline.h, which wraps up into 

macros some inline assembly sequences that speed transcendental function computation.

You should use inline assembly to speed up code only as a last resort. Current compilers are 

quite sophisticated and know a lot about the details of the processors for which they generate 

code. Therefore, compilers can often choose code sequences that may seem unintuitive or 

roundabout but that actually execute faster than other instruction sequences. Unless you 

understand the instruction set and scheduling attributes of your target processor very well, 

you’re probably better off letting the compiler’s optimizers generate assembly code for you for 

most operations.

Occasionally, one or two assembly instructions can replace several lines of higher-level 

language code. For example, determining the position of the most significant nonzero bit 

of a nonzero integer using the C programming languages requires a loop or floating-point 

computations. Many architectures, including the x86, have a single assembly instruction (bsr) to 

compute this bit position.

Activity Details
Simple Inline Assembly

Here we introduce the syntax of asm assembler instructions with an x86 example to shift a 

value 8 bits to the right:

asm (“shrl $8, %0” : “=r” (answer) : “r” (operand) : “cc”);

95



The keyword asm is followed by a parenthetic expression consisting of sections separated by 

colons. The first section contains an assembler instruction and its operands. In this example, 

shrl right-shifts the bits in its first operand. Its first operand is represented by %0. Its second 

operand is the immediate constant $8. The second section specifies the outputs. The 

instruction’s one output will be placed in the C variable answer, which must be an lvalue. The 

string “=r” contains an equals sign indicating an output operand and an r indicating that 

answer is stored in a register.

The third section specifies the inputs. The C variable operand specifies the value to shift. The 

string “r” indicates that it is stored in a register but omits an equals sign because it is an input 

operand, not an output operand. The fourth section indicates that the instruction changes the 

value in the condition code cc register.

A.Converting an asm to Assembly Instructions

GCC’s treatment of asm statements is very simple. It produces assembly instructions to deal 

with the asm’s operands, and it replaces the asm statement with the instruction that you 

specify. It does not analyze the instruction in any way. For example, GCC converts this program 

fragment

double foo, bar;

asm (“mycool_asm %1, %0” : “=r” (bar) : “r” (foo));

to these x86 assembly instructions:

movl -8(%ebp),%edx

movl -4(%ebp),%ecx

#APP

mycool_asm %edx, %edx

#NO_APP

movl %edx,-16(%ebp)

movl %ecx,-12(%ebp)

Remember that foo and bar each require two words of stack storage on a 32-bit x86 

architecture. The register ebp points to data on the stack. The first two instructions copy foo 

into registers EDX and ECX on which mycool_asm operates. The compiler decides to use the 

same registers to store the answer, which is copied into bar by the final two instructions. It 

chooses appropriate registers, even reusing the same registers, and copies operands to and 

from the proper locations automatically.

Extended Assembly Syntax

In the subsections that follow, we describe the syntax rules for asm statements. Their sections 

are separated by colons. We will refer to this illustrative asm statement, which computes the 

Boolean expression x > y:

Systems Programming

96



Unit 2.Shell Programming and Embedding Assembly in C 

asm (“fucomip %%st(1), %%st; seta %%al” :

 “=a” (result) : “u” (y), “t” (x) : “cc”, “st”);

First, fucomip compares its two operands x and y, and stores values indicating the result into 

the condition code register. Then seta converts these values into a 0 or 1 result.

B.Assembler Instructions

The first section contains the assembler instructions, enclosed in quotation marks. The example 

asm contains two assembly instructions, fucomip and seta, separated by semicolons. If the 

assembler does not permit semicolons, use newline characters (\n) to separate instructions. The 

compiler ignores the contents of this first section, except that one level of percentage signs is 

removed, so %% changes to %. The meaning of %%st(1) and other such terms is architecture-

dependent.GCC will complain if you specify the -traditional option or the -ansi option when 

compiling a program containing asm statements. To avoid producing these errors, such as in 

header files, use the alternative keyword __asm__.

C.Outputs

The second section specifies the instructions’ output operands using C syntax. Each operand 

is specified by an operand constraint string followed by a C expression in parentheses. For 

output operands, which must be lvalues, the constraint string should begin with an equals sign. 

The compiler checks that the C expression for each output operand is in fact an lvalue. Letters 

specifying registers for a particular architecture can be found in the GCC source code, in the 

REG_CLASS_FROM_LETTER macro. For example, the gcc/config/i386/i386.h configuration file 

in GCC lists the register letters for the x86 architecture (You’ll need to have some familiarity 

with GCC’s internals to make sense of this file). Table 1 below summarizes these.

97



Table 1: Register Letters for the Intel x86 Architecture

Register Letter Registers That GCC May Use

R General register (EAX, EBX, ECX, EDX, ESI, EDI, 

EBP, ESP)

Q General register for data (EAX, EBX, ECX, EDX)

F Floating-point register

T Top floating-point register

U Second-from-top floating-point register

A EAX register

B EBX register

C ECX register

D EDX register

X SSE register (Streaming SIMD Extension register)

Y MMX multimedia registers

A An 8-byte value formed from EAX and EDX

D Destination pointer for string operations (EDI)

S Source pointer for string operations (ESI)

Multiple operands in an asm statement, each specified by a constraint string and a C 

expression, are separated by commas, as illustrated in the example asm’s input section.  You 

may specify up to 10 operands, denoted %0, %1,…, %9, in the output and input sections. If 

there are no output operands but there are input operands or clobbered registers, leave the 

output section empty or mark it with a comment like

/* no outputs */.

A.Inputs

The third section specifies the input operands for the assembler instructions. The constraint 

string for an input operand should not have an equals sign, which indicates an lvalue. 

Otherwise, an input operand’s syntax is the same as for output operands. To indicate that a 

register is both read from and written to in the same asm, use an input constraint string of the 

output operand’s number. For example, to indicate that an input register is the same as the 

first output register number, use 0. Output operands are numbered left to right, starting with 

0. Merely specifying the same C expression for an output operand and an input operand does 

not guarantee that the two values will be placed in the same register. This input section can be 

omitted if there are no input operands and the subsequent clobber section is empty. 

Systems Programming

98



Unit 2.Shell Programming and Embedding Assembly in C 

B. Clobbers

If an instruction modifies the values of one or more registers as a side effect, specify the 

clobbered registers in the asm’s fourth section. For example, the fucomip instruction modifies 

the condition code register, which is denoted cc. Separate strings representing clobbered 

registers with commas. If the instruction can modify an arbitrary memory location, specify 

memory. 

Using the clobber information, the compiler determines which values must be reloaded after 

the asm executes. If you don’t specify this information correctly, GCC may assume incorrectly 

that registers still contain values that have, in fact, been overwritten, which will affect your 

program’s correctness.

Example

The x86 architecture includes instructions that determine the positions of the least significant 

set bit and the most significant set bit in a word. The processor can execute these instructions 

quite efficiently. In contrast, implementing the same operation in C requires a loop and a bit 

shift. For example, the bsrl assembly instruction computes the position of the most significant 

bit set in its first operand, and places the bit position (counting from 0, the least significant bit) 

into its second operand. To place the bit position for number into position, we could use this 

asm statement:

asm (“bsrl %1, %0” : “=r” (position) : “r” (number));

One way you could implement the same operation in C is using this loop:

long i;

for (i = (number >> 1), position = 0; i != 0; ++position)

i >>= 1;

To test the relative speeds of these two versions, we’ll place them in a loop that computes the 

bit positions for a large number of values. The program “bit-pos-loop.c” given below does 

this using the C loop implementation. The program loops over integers, from 1 up to the value 

specified on the command line. For each value of number, it computes the most significant bit 

that is set. 

The subsequent program “bit-pos-asm.c” does the same thing using the inline assembly 

instruction. Note that in both versions, we assign the computed bit position to a volatile 

variable result. This is to coerce the compiler’s optimizer so that it does not eliminate the entire 

bit position computation; if the result is not used or stored in memory, the optimizer eliminates 

the computation as “dead code.”

//Program “bit-pos-loop.c” - Find Bit Position Using a Loop

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char* argv[])

99



{

long max = atoi (argv[1]);

long number;

long i;

unsigned position;

volatile unsigned result;

/* Repeat the operation for a large number of values. */

for (number = 1; number <= max; ++number) {

/* Repeatedly shift the number to the right, until the result is

zero. Keep count of the number of shifts this requires. */

for (i = (number >> 1), position = 0; i != 0; ++position)

i >>= 1;

/* The position of the most significant set bit is the number of

shifts we needed after the first one. */

result = position;

}

return 0;

}

//Program “bit-pos-asm.c” - Find Bit Position Using bsrl

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char* argv[])

{

long max = atoi (argv[1]);

long number;

unsigned position;

volatile unsigned result;

/* Repeat the operation for a large number of values. */

for (number = 1; number <= max; ++number) {

/* Compute the position of the most significant set bit using the

Systems Programming

100



Unit 2.Shell Programming and Embedding Assembly in C 

bsrl assembly instruction. */

asm (“bsrl %1, %0” : “=r” (position) : “r” (number));

result = position;

}

return 0;

}

We’ll compile both versions with full optimization:

$ cc -O2 -o bit-pos-loop bit-pos-loop.c

$ cc -O2 -o bit-pos-asm bit-pos-asm.c

Now let’s run each using the time command to measure execution time. We’ll specify a large 

value as the command-line argument, to make sure that each version takes at least a few 

seconds to run.

$ time ./bit-pos-loop 250000000

19.51user 0.00system 0:20.40elapsed 95%CPU (0avgtext+0avgdata

0maxresident)k0inputs+0outputs (73major+11minor)pagefaults 0swaps

$ time ./bit-pos-asm 250000000

3.19user 0.00system 0:03.32elapsed 95%CPU (0avgtext+0avgdata

0maxresident)k0inputs+0outputs (73major+11minor)pagefaults 0swaps

Notice that the version that uses inline assembly executes a great deal faster (your results for 

this example may vary).

Optimization Issues

GCC’s optimizer attempts to rearrange and rewrite programs’ code to minimize execution 

time even in the presence of asm expressions. If the optimizer determines that an asm’s output 

values are not used, the instruction will be omitted unless the keyword volatile occurs between 

asm and its arguments. (As a special case, GCC will not move an asm without any output 

operands outside a loop.) Any asm can be moved in ways that are difficult to predict, even 

across jumps. The only way to guarantee a particular assembly instruction ordering is to include 

all the instructions in the same asm. Using asms can restrict the optimizer’s effectiveness 

because the compiler does not know the asms’ semantics. GCC is forced to make conservative 

guesses that may prevent some optimizations. Caveat emptor!

101



Maintenance and Portability Issues

If you decide to use nonportable, architecture-dependent asm statements, encapsulating 

these statements within macros or functions can aid in maintenance and porting. Placing all 

these macros in one file and documenting them will ease porting to a different architecture, 

something that occurs with surprising frequency even for “throwaway” programs. Thus, the 

programmer will need to rewrite only one file for the different architecture. For example, most 

asm statements in the Linux source code are grouped into /usr/src/linux/include/asm and  usr/

src/linux/include/asm-i386 header files, and /usr/src/linux/arch/i386/ and /usr/src/linux/drivers/ 

source files.

Conclusion
In this activity we presented the basics of inling assembly code into a C/C++ program.

    Assessment
Practise the examples given in this activity, to help you get more insights of 
assembly   inlining.

  Unit Summary
This unit presented three aspects of programming a computer system, namely, using the shell, 

high-level languages such as C/C++, and assembly language. Specifically, the Unix/Linux shell 

was introduced alongside the process of writing and the constructs of a shell program. We 

presented the commonly used shells are available in Linux/Unix OS, and explained the process 

of  writing a shell script and working with variables in shells Finally, the techniques of inlining 

assembly code into a C/C++ program were presented. 

Systems Programming

102



Unit 2.Shell Programming and Embedding Assembly in C 

    Unit Assessment
  Check your understanding!

  Miscellaneous Exercises 

Instructions

1. Write the following shell script, save it, execute it and note down  it’s output.

# Script to print user information who currently login 

, current date & time

#

clear

echo “Hello $USER”

echo “Today is \c “;date

echo “Number of user login : \c” ; who | wc -l

echo “Calendar”

cal

exit 0

 

103



# Script to test MY knowledge about 

variables!

#

myname=Vivek

myos = TroubleOS

myno=5

echo “My name is $myname”

echo “My os is $myos”

echo “My number is myno, can you see 

this number”

6. Write a script, pad, that will pad on the left. Count directly from 2 to 10.

7. Write the following inline assembly program, save it, execute it and note 
down  it’s output (The examplemakes use of extended inline assembly statements. 
It performs simple arithmetic operations on integer operands and displays the result

 #include <stdio.h>

int main() {

    int arg1, arg2, add, sub, mul, quo, rem ;

    printf( “Enter two integer numbers : “ );

    scanf( “%d%d”, &arg1, &arg2 );

    /* Perform Addition, Subtraction, Multiplication & Division */

    __asm__ ( “addl %%ebx, %%eax;” : “=a” (add) : “a” (arg1) , “b” 

(arg2) );

    __asm__ ( “subl %%ebx, %%eax;” : “=a” (sub) : “a” (arg1) , “b” 

(arg2) );

    __asm__ ( “imull %%ebx, %%eax;” : “=a” (mul) : “a” (arg1) , “b” 

(arg2) );

Systems Programming

104



Unit 2.Shell Programming and Embedding Assembly in C 

    __asm__ ( “movl $0x0, %%edx;”

              “movl %2, %%eax;”

              “movl %3, %%ebx;”

               “idivl %%ebx;” : “=a” (quo), “=d” (rem) : “g” (arg1), 

“g” (arg2) );

    printf( “%d + %d = %d\n”, arg1, arg2, add );

    printf( “%d - %d = %d\n”, arg1, arg2, sub );

    printf( “%d * %d = %d\n”, arg1, arg2, mul );

    printf( “%d / %d = %d\n”, arg1, arg2, quo );

    printf( “%d %% %d = %d\n”, arg1, arg2, rem );

    return 0 ;

}

8. Write the following inline assembly program, save it, execute it and note down 
it’s output (The example aim to compute the Greatest Common Divisor using well 
known Euclid’s Algorithm). 

#include <stdio.h>

int gcd( int a, int b ) {

    int result ;

    /* Compute Greatest Common Divisor using Euclid’s Algorithm */

    __asm__ __volatile__ ( “movl %1, %%eax;”

                          “movl %2, %%ebx;”

                          “CONTD: cmpl $0, %%ebx;”

                          “je DONE;”

                          “xorl %%edx, %%edx;”

                          “idivl %%ebx;”

                          “movl %%ebx, %%eax;”

                          “movl %%edx, %%ebx;”

                          “jmp CONTD;”

105



                     “DONE: movl %%eax, %0;” : “=g” (result) : “g” 

(a), “g” (b)

    );

    return result ;

}

int main() {

    int first, second ;

    printf( “Enter two integers : “ ) ;

    scanf( “%d%d”, &first, &second );

    printf( “GCD of %d & %d is %d\n”, first, second, gcd(first, second) 

) ;

    return 0 ;

}

Grading Scheme
As guided by the offering Institution Grading Regulations

Answers mailto:njulumi@gmail.com

Unit Readings and Other Resources
1. Learning the bash Shell: Unix Shell Programming (In a Nutshell (O’Reilly)), 

Kindle Edition, Cameron Newham (Author) 

2. bash Cookbook: Solutions and Examples for bash Users (Cookbooks 
(O’Reilly)), Kindle Edition, Carl Albing (Author), JP Vossen (Author), Cameron 
Newham (Author) 

3. Mark Mitchell, Jeffrey Oldham, and Alex Samuel; Advanced Linux 
Programming; Copyright © 2001 by New Riders Publishing; FIRST EDITION: 
June, 2001

4. Professional Assembly Language,  John Wiley & Sons, 22 Feb 
2005, By Richard Blumhttp://www.codeproject.com/Articles/15971/

Using-Inline-Assembly-in-C-C

Systems Programming

106



Unit 3.  Processes,Threads and Memory management 

Unit 3.  Processes,Threads and 
Memory management 
Unit Introduction
A running instance of a program is called a process. For example, if you have two terminal 

windows showing on your screen, then you are probably running the same terminal program 

twice, i.e. you have two terminal processes. Each terminal window is probably running a 

shell; each running shell is another process. When you invoke a command from a shell, the 

corresponding program is executed in a new process; the shell process resumes when that 

process completes. Advanced programmers often use multiple cooperating processes in a 

single application to enable the application to do more than one thing at once, to increase 

application robustness, and to make use of already-existing programs.

Threads, like processes, are a mechanism to allow a program to do more than one thing at a 

time. As with processes, threads appear to run concurrently; the Linux kernel schedules them 

asynchronously, interrupting each thread from time to time to give others a chance to execute. 

Conceptually, a thread exists within a process. Threads are a finer-grained unit of execution 

than processes. When you invoke a program, Linux creates a new process and in that process 

creates a single thread, which runs the program sequentially. That thread can create additional 

threads; all these threads run the same program in the same process, but each thread may be 

executing a different part of the program at any given time.

Program must be brought into memory and placed within a process for it to be run. Memory 

is the primary data storage area for computers. We call the basic memory unit a bit. A bit may 

contain two different values: either 0 or 1. Memory consists of a number of cells which can 

store some number of bits. The memory is just a byte array. Each cell has a number to identify 

it, called its address. Programs refer addresses to reach memory. A management system called 

virtual memory organizes memory into “pages”, which are memory units typically a few Kbytes 

in size. CPU has a unit called Memory Management Unit which is responsible for operating 

virtual memory.

In this unit we describe process, thread and memory manipulation functions in Linux systems 

most of whose are similar to those on other UNIX systems. Most of the described functions are 

declared in the header file <unistd.h>; check the man page for each function to be sure. 

Because a process and all its threads can be executing only one program at a time, if any 

thread inside a process calls one of the exec functions, all the other threads are ended (the 

new program may, of course, create new threads). GNU/Linux implements the POSIX standard 

thread API (known as pthreads). All thread functions and data types are declared in the header 

file <pthread.h>.The pthread functions are not included in the standard C library. Instead, 

they are in libpthread, so you should add -lpthread to the command line when you link your 

program.

107



Unit Objectives
Upon completion of this unit you should be able to:

• explain the process, thread and memory management concepts

• create processes using the system,  fork and exec functions

• manage and manipulate processes using various system signals

• create and manage threads

• analyze  processes from threads

• demonstrate understanding of memory management in C programs

 

 

  Key Terms
Process:A process is an instance of a program running in a computer. It is close 
in meaning to task, a term used in some operating systems. In UNIX/Linux and 
some other operating systems, a process is started when a program is initiated 
(either by a user entering a shell command or by another program).

Thread:A thread of execution is the smallest sequence of programmed 
instructions that can be managed independently by a scheduler, which is 
typically a part of the operating system. The implementation of threads and 
processes differs between operating systems, but in most cases a thread is a 
component of a process. Multiple threads can exist within the same process 
and share resources such as memory, while different processes do not share 
these resources. In particular, the threads of a process share its instructions 
(executable code) and its context (the values of its variables at any given 
moment).

Memory management:Memory management is the act of managing computer 
memory at the system level. The essential requirement of memory management 
is to provide ways to dynamically allocate portions of memory to programs at 
their request, and free it for reuse when no longer needed. This is critical to 
any advanced computer system where more than a single process might be 

underway at any time.

Learning Activities

Activity 1 - Processes

Introduction 

Even as you sit down at your computer, there are processes running. Every executing program 

uses one or more processes. Let’s start by taking a look at the processes already on your 

computer. 

Systems Programming

108



Unit 3.  Processes,Threads and Memory management 

Activity Details
Working with Processes

A.Process Ids

Each process in a Linux system is identified by its unique process ID, sometimes referred to as 

pid. Process IDs are 16-bit numbers that are assigned sequentially by Linux as new processes 

are created. Every process also has a parent process (except the special init process-the first 

process in Linux Systems. Thus, you can think of the processes on a Linux system as arranged 

in a tree, with the init process at its root. The parent process ID, or ppid, is simply the process 

ID of the process’s parent. When referring to process IDs in a C or C++ program, always use 

the pid_t  typedef, which is defined in <sys/types.h>. A program can obtain the process ID of 

the process it’s running in with the getpid() system call, and it can obtain the process ID of its 

parent process with the getppid() system call. For instance, the program “print-pid.c” provided 

below  prints its process ID and its parent’s process ID.

// Program print-pid.c - Printing the Process ID

#include <stdio.h>

#include <unistd.h>

int main ()

{

printf (“The process ID is %d\n”, (int) getpid ());

printf (“The parent process ID is %d\n”, (int) getppid ());

return 0;

}

Observe that if you invoke this program several times, a different process ID is reported 

because each invocation is in a new process. However, if you invoke it every time from the 

same shell, the parent process ID (that is, the process ID of the shell process) is the same.

B.Viewing Active Processes

The ps command displays the processes that are running on your system. The GNU/Linux 

version of ps has lots of options because it tries to be compatible with versions of ps on several 

other UNIX variants. These options control which processes are listed and what information 

about each is shown. By default, invoking ps displays the processes controlled by the terminal 

or terminal window in which ps is invoked. For example:

$ ps

 PID    TTY     TIME    CMD

21693 pts/8 00:00:00 bash

21694 pts/8 00:00:00 ps

109



This invocation of ps shows two processes. The first, bash, is the shell running on this terminal. 

The second is the running instance of the ps program itself. The first column, labeled PID, 

displays the process ID of each. For a more detailed look at what’s running on your GNU/Linux 

system, invoke this:

$ ps -e -o pid,ppid,command

The -e option instructs ps to display all processes running on the system. The -o pid, ppid, 

command option tells ps what information to show about each process - in this case, the 

process ID, the parent process ID, and the command running in this process. Below are the 

first few lines and last few lines of output from this command on typical system. You may see 

different output, depending on what’s running on your system.

$ ps -e -o pid,ppid,command

PID PPID COMMAND

1 0 init [5]

2 1 [kflushd]

3 1 [kupdate]

 ... 

21725 21693 Xterm

21727 21725 Bash

21728 21727 ps -e -o pid,ppid,command

Note that the parent process ID of the ps command, 21727, is the process ID of bash, the shell 

from which I invoked ps. The parent process ID of bash is in turn 21725, the process ID of the 

xterm program in which the shell is running.

C.Killing a Process

You can kill a running process with the kill command. Simply specify on the command line 

the process ID of the process to be killed. By default the kill command works by sending the 

process a SIGTERM, or termination signal. This causes the process to terminate, unless the 

executing program explicitly handles or masks the SIGTERM signal.

Creating Processes

Two common techniques are used for creating a new process, the system function and the fork 

function along with exec functions. The first is relatively simple but should be used sparingly 

because it is inefficient and considerably has security risks. The second technique is more 

complex but provides greater flexibility, speed, and security.

A.Using system

The system function in the standard C library provides an easy way to execute a command from 

within a program, much as if the command had been typed into a shell. In fact, system creates 

a subprocess by running the standard Bourne shell (/bin/sh) and then hands the command to 

Systems Programming

110



Unit 3.  Processes,Threads and Memory management 

that shell for execution. For example, the program “system.c” provided below invokes the ls 

command to display the contents of the root directory, as if you typed ls -l / into a shell.

//Program “system.c” - Using the system Call

#include <stdlib.h>

int main ()

{

int return_value;

return_value = system (“ls -l /”);

return return_value;

}

The system function returns the exit status of the shell command. If the shell itself cannot be 

run, system returns 127; if another error occurs, system returns –1. Because the system function 

uses a shell to invoke your command, it’s subject to the features, limitations, and security flaws 

of the system’s shell. You can’t rely on the availability of any particular version of the Bourne 

shell. On many UNIX systems, /bin/sh is a symbolic link to another shell. For instance, on 

most GNU/Linux systems, /bin/sh points to bash (the Bourne-Again SHell), and different GNU/

Linux distributions use different versions of bash. Invoking a program with root privilege with 

the system function, for instance, can have different results on different GNU/Linux systems. 

Therefore, it’s preferable to use the fork and exec method for creating processes.

B.Using fork and exec

The DOS and Windows API contain the spawn family of functions. These functions take as an 

argument the name of a program to run and create a new process instance of that program. 

Linux doesn’t contain a single function that does all this in one step. Instead, Linux provides 

one function, fork, which makes a child process that is an exact copy of its parent process. Linux 

provides another set of functions, the exec family, which causes a particular process to cease 

being an instance of one program and to instead become an instance of another program. To 

spawn a new process, you first use fork to make a copy of the current process. Then you use 

exec to transform one of these processes into an instance of the program you want to spawn.

i.Calling fork

When a program calls fork, a duplicate process, called the child process, is created. The parent 

process continues executing the program from the point that fork was called. The child process, 

too, executes the same program from the same place. So how do the two processes differ? 

First, the child process is a new process and therefore has a new process ID, distinct from its 

parent’s process ID. One way for a program to distinguish whether it’s in the parent process or 

the child process is to call getpid.  However, the fork function provides different return values 

to the parent and child processes—one process “goes in” to the fork call, and two processes 

“come out,” with different return values. 

111



The return value in the parent process is the process ID of the child. The return value in the 

child process is zero. Because no process ever has a process ID of zero, this makes it easy for 

the program whether it is now running as the parent or the child process. 

Program “fork.c” provided below is an example of using fork to duplicate a program’s process. 

Note that the first block of the “if” statement is executed only in the parent process, while the 

“else” clause is executed in the child process.

//Program  fork.c - Using fork to Duplicate a Program’s Process

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main ()

{

    pid_t child_pid;

    printf (“the main program process ID is %d\n”, (int) getpid ());

    child_pid = fork ();

    if (child_pid != 0) {

printf (“this is the parent process, with id %d\n”, (int) getpid ());

printf (“the child’s process ID is %d\n”, (int) child_pid);

   }

   else

printf (“this is the child process, with id %d\n”, (int) getpid ());

              return 0;

}

ii.Using the exec Family

The exec functions replace the program running in a process with another program. When a 

program calls an exec function, that process immediately ceases executing that program and 

begins executing a new program from the beginning, assuming that the exec call doesn’t 

encounter an error. Within the exec family, there are functions that vary slightly in their 

capabilities and how they are called.  Functions that contain the letter p in their names (execvp 

and execlp) accept a program name and search for a program by that name in the current 

execution path; functions that don’t contain the p must be given the full path of the program 

to be executed. 

Systems Programming

112



Unit 3.  Processes,Threads and Memory management 

Functions that contain the letter v in their names (execv, execvp, and execve) accept the 

argument list for the new program as a NULL-terminated array of pointers to strings. Functions 

that contain the letter l (execl, execlp, and execle) accept the argument list using the C 

language’s varargs mechanism. Functions that contain the letter e in their names (execve and 

execle) accept an additional argument, an array of environment variables. The argument should 

be a NULL-terminated array of pointers to character strings. Each character string should be of 

the form “VARIABLE=value”.

Because exec replaces the calling program with another one, it never returns unless an error 

occurs. The argument list passed to the program is analogous to the command-line arguments 

that you specify to a program when you run it from the shell. They are available through the 

argc and argv parameters to main. Remember, when a program is invoked from the shell, the 

shell sets the first element of the argument list argv[0] to the name of the program, the second 

element of the argument list argv[1] to the first command-line argument, and so on. When you 

use an exec function in your programs, you, too, should pass the name of the function as the 

first element of the argument list.

iii.Using fork and exec Together

A common pattern to run a subprogram within a program is first to fork the process and then 

exec the subprogram. This allows the calling program to continue execution in the parent 

process while the calling program is replaced by the subprogram in the child process. The 

program “fork-exec.c” provided below, like program “system.c” given above lists the contents 

of the root directory using the ls command. Unlike the program “system.c”, though, it invokes 

the ls command directly, passing it the command-line arguments -l and / rather than invoking it 

through a shell.

//Program “fork-exec.c” - Using fork and exec Together

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

    /* Spawn a child process running a new program. PROGRAM is the name

     of the program to run; the path will be searched for this program.

     ARG_LIST is a NULL-terminated list of character strings to be

     passed as the program’s argument list. Returns the process ID of

     the spawned process. */

 int spawn (char* program, char** arg_list)

{

113



pid_t child_pid;

/* Duplicate this process. */

child_pid = fork ();

if (child_pid != 0)

      /* This is the parent process. */

  return child_pid;

else {

    /* Now execute PROGRAM, searching for it in the path. */

     execvp (program, arg_list);

    /* The execvp function returns only if an error occurs. */

     fprintf (stderr, “an error occurred in execvp\n”);

     abort ();

         }

}

int main ()

{

     /* The argument list to pass to the “ls” command. */

     char* arg_list[] = {

     “ls”, /* argv[0], the name of the program. */

      “-l”,

      “/”,

      NULL /* The argument list must end with a NULL. */

      };

      /* Spawn a child process running the “ls” command. Ignore the

       returned child process ID. */

       spawn (“ls”, arg_list);

       printf (“done with main program\n”);

return 0;

}

Systems Programming

114



Unit 3.  Processes,Threads and Memory management 

A.Process Scheduling

Linux schedules the parent and child processes independently; there’s no guarantee of which 

one will run first, or how long it will run before Linux interrupts it and lets the other process (or 

some other process on the system) run. In particular, none, part, or all of the ls command may 

run in the child process before the parent completes.  Linux promises that each process will run 

eventually—no process will be completely starved of execution resources.

You may specify that a process is less important—and should be given a lower priority —by 

assigning it a higher niceness value. By default, every process has a niceness of zero. A higher 

niceness value means that the process is given a lesser execution priority; conversely, a process 

with a lower (that is, negative) niceness gets more execution time. To run a program with a 

nonzero niceness, use the nice command, specifying the niceness value with the -n option. 

For example, this is how you might invoke the command “sort input.txt > output.txt”, a long 

sorting operation, with a reduced priority so that it doesn’t slow down the system too much:

$nice -n 10 sort input.txt > output.txt

You can use the renice command to change the niceness of a running process from the 

command line. To change the niceness of a running process programmatically, use the nice 

function. Its argument is an increment value, which is added to the niceness value of the 

process that calls it. Remember that a positive value raises the niceness value and thus reduces 

the process’s execution priority. 

Note that only a process with root privilege can run a process with a negative niceness value 

or reduce the niceness value of a running process. This means that you may specify negative 

values to the nice and renice commands only when logged in as root, and only a process 

running as root can pass a negative value to the nice function. This prevents ordinary users 

from grabbing execution priority away from others using the system.

Signals

Signals are mechanisms for communicating with and manipulating processes in Linux. In 

this section we present some of the most important signals and techniques that are used for 

controlling processes. 

A signal is a special message sent to a process. Signals are asynchronous; when a process 

receives a signal, it processes the signal immediately, without finishing the current function or 

even the current line of code. There are several dozen different signals, each with a different 

meaning. Each signal type is specified by its signal number, but in programs, you usually refer 

to a signal by its name. In Linux, these are defined in /usr/include/bits/signum.h. You shouldn’t 

include this header file directly in your programs, though, instead, use <signal.h>.

When a process receives a signal, it may do one of several things, depending on the signal’s 

disposition. For each signal, there is a default disposition, which determines what happens 

to theprocess if the program does not specify some other behavior. For most signal types, a 

program may specify some other behavior—either to ignore the signal or to call a special 

signal-handler function to respond to the signal. 

115



If a signal handler is used, the currently executing program is paused, the signal handler is 

executed, and, when the signal handler returns, the program resumes.

The Linux system sends signals to processes in response to specific conditions. For instance, 

SIGBUS (bus error), SIGSEGV (segmentation violation), and SIGFPE (floating point exception) 

may be sent to a process that attempts to perform an illegal operation. The default disposition 

for these signals it to terminate the process and produce a core file. A process may also send 

a signal to another process. One common use of this mechanism is to end another process 

by sending it a SIGTERM or SIGKILL signal.  Another common use is to send a command to 

a running program. Two “userdefined” signals are reserved for this purpose: SIGUSR1 and 

SIGUSR2.The SIGHUP signal is sometimes used for this purpose as well, commonly to wake up 

an idling program or cause a program to re-read its configuration files.

The sigaction function can be used to set a signal disposition. The first parameter is the 

signal number. The next two parameters are pointers to sigaction structures; the first of these 

contains the desired disposition for that signal number, while the second receives the previous 

disposition. The most important field in the first or second sigaction structure is sa_handler. It 

can take one of three values:  

• SIG_DFL, which specifies the default disposition for the signal.

• SIG_IGN, which specifies that the signal should be ignored

• A pointer to a signal-handler function. The function should take one parameter, 
the signal number, and return void.

Because signals are asynchronous, the main program may be in a very fragile state when a 

signal is processed and thus while a signal handler function executes. Therefore, you should 

avoid performing any I/O operations or calling most library and system functions from signal 

handlers.

A signal handler should perform the minimum work necessary to respond to the signal, and 

then return control to the main program (or terminate the program). In most cases, this consists 

simply of recording the fact that a signal occurred. The main program then checks periodically 

whether a signal has occurred and reacts accordingly.

It is possible for a signal handler to be interrupted by the delivery of another signal. While 

this may sound like a rare occurrence, if it does occur, it will be very difficult to diagnose and 

debug the problem. Therefore, you should be very careful about what your program does in a 

signal handler. 

Even assigning a value to a global variable can be dangerous because the assignment may 

actually be carried out in two or more machine instructions, and a second signal may occur 

between them, leaving the variable in a corrupted state. 

Systems Programming

116



Unit 3.  Processes,Threads and Memory management 

If you use a global variable to flag a signal from a signal-handler function, it should be of 

the special type sig_atomic_t. Linux guarantees that assignments to variables of this type 

are performed in a single instruction and therefore cannot be interrupted midway. In Linux, 

sig_atomic_t is an ordinary int; in fact, assignment to integer types the size of int or smaller, or 

to pointers, are atomic. If you want to write a program that’s portable to any standard UNIX 

system, though, use sig_atomic_t for these global variables. The program skeleton “sigusr1.c” 

below, for instance, uses a signal-handler function tocount the number of times that the 

program receives SIGUSR1, one of the signals reserved for application use.

//Program sigusr1.c - Using a Signal Handler

#include <signal.h>

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <unistd.h>

sig_atomic_t sigusr1_count = 0;

void handler (int signal_number)

{

++sigusr1_count;

}

int main ()

{

struct sigaction sa;

memset (&sa, 0, sizeof (sa));

sa.sa_handler = &handler;

sigaction (SIGUSR1, &sa, NULL);

/* Do some lengthy stuff here. */

/* ... */

printf (“SIGUSR1 was raised %d times\n”, sigusr1_count);

return 0;

}

117



Process Termination

Normally, a process terminates in one of two ways. Either the executing program calls the exit 

function, or the program’s main function returns. Each process has an exit code: a number that 

the process returns to its parent. The exit code is the argument passed to the exit function, or 

the value returned from main.

A process may also terminate abnormally, in response to a signal. For instance, the SIGBUS, 

SIGSEGV, and SIGFPE signals mentioned previously cause the process to terminate. Other 

signals are used to terminate a process explicitly. The SIGINT signal is sent to a process when 

the user attempts to end it by typing Ctrl+C in its terminal. The SIGTERM signal is sent by the 

kill command. The default disposition for both of these is to terminate the process. By calling 

the abort function, a process sends itself the SIGABRT signal, which terminates the process and 

produces a core file. The most powerful termination signal is SIGKILL, which ends a process 

immediately and cannot be blocked or handled by a program.

Any of these signals can be sent using the kill command by specifying an extra command-line 

flag; for instance, to end a troublesome process by sending it a SIGKILL, invoke the following, 

where pid is its process ID:

$kill -KILL pid

To send a signal from a program, use the kill function. The first parameter is the target process 

ID. The second parameter is the signal number; use SIGTERM to simulate the default behavior 

of the kill command. For instance, where child pid contains the process ID of the child process, 

you can use the kill function to terminate a child process from the parent by calling it like this:

kill (child_pid, SIGTERM);

nclude the <sys/types.h> and <signal.h> headers if you use the kill function. By convention, 

the exit code is used to indicate whether the program executed correctly. An exit code of zero 

indicates correct execution, while a nonzero exit code indicates that an error occurred. In the 

latter case, the particular value returned may give some indication of the nature of the error. It’s 

a good idea to stick with this convention in your programs because other components of the 

GNU/Linux system assume this behavior. For instance, shells assume this convention when you 

connect multiple programs with the && (logical and) and || (logical or) operators. Therefore, you 

should explicitly return zero from your main function, unless an error occurs.

With most shells, it’s possible to obtain the exit code of the most recently executed program 

using the special $? variable. Here’s an example in which the ls command is invoked twice and 

its exit code is displayed after each invocation. In the first case, ls execute correctly and return 

the exit code zero. In the second case, ls encounters an error (because the filename specified 

on the command line does not exist) and thus returns a nonzero exit code.

Systems Programming

118



Unit 3.  Processes,Threads and Memory management 

$ ls /

bin coda etc lib misc nfs proc sbin usr

boot dev home lost+found mnt opt root tmp var

$ echo $?

0

$ ls bogusfile

ls: bogusfile: No such file or directory

$ echo $?

1

Note that even though the parameter type of the exit function is int and the main function 

returns an int, Linux does not preserve the full 32 bits of the return code. In fact, you should 

use exit codes only between zero and 127. Exit codes above 128 have a special meaning—

when a process is terminated by a signal; its exit code is 128 plus the signal number.

A.Waiting for Process Termination

If you typed in and ran the fork and exec example program “fork-exec.c” in Section 1.1.1.2, 

you may have noticed that the output from the ls program often appears after the “main 

program” has already completed. That’s because the child process, in which ls is run, is 

scheduled independently of the parent process. 

Because Linux is a multitasking operating system, both processes appear to execute 

simultaneously, and you can’t predict whether the ls program will have a chance to run before 

or after the parent process runs. In some situations, though, it is desirable for the parent 

process to wait until one or more child processes have completed. This can be done with the 

wait family of system calls. These functions allow you to wait for a process to finish executing, 

and enable the parent process to retrieve information about its child’s termination. There 

are four different system calls in the wait family; you can choose to get a little or a lot of 

information about the process that exited, and you can choose whether you care about which 

child process terminated.

The simplest such function is called simply wait. It blocks the calling process until one of 

its child processes exits (or an error occurs). It returns a status code via an integer pointer 

argument, from which you can extract information about how the child process exited. For 

instance, the WEXITSTATUS macro extracts the child process’s exit code.

You can use the WIFEXITED macro to determine from a child process’s exit status whether 

that process exited normally (via the exit function or returning from main) or died from an 

unhandled signal. In the latter case, use the WTERMSIG macro to extract from its exit status 

the signal number by which it died. Below is the main function from the fork and exec example 

again. This time, the parent process calls wait to wait until the child process, in which the ls 

command executes, is finished.

int main ()

119



{

   int child_status;

        /* The argument list to pass to the “ls” command. */

   char* arg_list[] = {

   “ls”, /* argv[0], the name of the program. */

   “-l”,

   “/”,

    NULL /* The argument list must end with a NULL. */

    };

    /* Spawn a child process running the “ls” command. Ignore the

       returned child process ID. */

   spawn (“ls”, arg_list);

    /* Wait for the child process to complete. */

    wait (&child_status);

    if (WIFEXITED (child_status))

    printf (“the child process exited normally, with exit code %d\n”,

            WEXITSTATUS (child_status));

    else

 printf (“the child process exited abnormally\n”);

   return 0;

}

Several similar system calls are available in Linux, which are more flexible or provide more 

information about the exiting child process. The waitpid function can be used to wait for a 

specific child process to exit instead of any child process. The wait3 function returns CPU 

usage statistics about the exiting child process, and the wait4 function allows you to specify 

additional options about which processes to wait for.

B.Zombie Processes

If a child process terminates while its parent is calling a wait function, the child process 

vanishes and its termination status is passed to its parent via the wait call. But what happens 

when a child process terminates and the parent is not calling wait? Does it simply vanish? No, 

because then information about its termination—such as whether it exited normally and, if so, 

what its exit status is—would be lost. Instead, when a child process terminates, it becomes a 

zombie process.

Systems Programming

120



Unit 3.  Processes,Threads and Memory management 

A zombie process is a process that has terminated but has not been cleaned up yet. It is the 

responsibility of the parent process to clean up its zombie children. The wait functions do 

this, too, so it’s not necessary to track whether your child process is still executing before 

waiting for it. Suppose, for instance, that a program forks a child process, performs some other 

computations, and then calls wait. If the child process has not terminated at that point, the 

parent process will block in the wait call until the child process finishes. If the child process 

finishes before the parent process calls wait, the child process becomes a zombie. When the 

parent process calls wait, the zombie child’s termination status is extracted, the child process is 

deleted, and the wait call returns immediately.

What happens if the parent does not clean up its children? They stay around in the system, 

as zombie processes. The program “zombie.c” provided below forks a child process, which 

terminates immediately and then goes to sleep for a minute, without ever cleaning up the child 

process.

//Program zombie.c - Making a Zombie Process

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main ()

{

    pid_t child_pid;

   /* Create a child process. */

    child_pid = fork ();

     if (child_pid > 0) {

     /* This is the parent process. Sleep for a minute. */

     sleep (60);

    }

    else {

          /* This is the child process. Exit immediately. */

       exit (0);

    }

     return 0;

}

121



Try compiling this file to an executable named make-zombie. Run it, and while it’s still running, 

list the processes on the system by invoking the following command in another window:

$ ps -e -o pid,ppid,stat,cmd

This lists the process ID, parent process ID, process status, and process command line. Observe 

that, in addition to the parent make-zombie process, there is another make-zombie process 

listed. It’s the child process; note that its parent process ID is the process ID of the main make-

zombie process. The child process is marked as <defunct>, and its status code is Z, for zombie.

What happens when the main make-zombie program ends when the parent process exits, 

without ever calling wait? Does the zombie process stay around? No—try running ps again, 

and note that both of the make-zombie processes are gone. When a program exits, its children 

are inherited by a special process, the init program, which always runs with process ID of 1 (it’s 

the first process started when Linux boots).The init process automatically cleans up any zombie 

child processes that it inherits.

C.Cleaning Up Children Asynchronously

If you’re using a child process simply to exec another program, it’s fine to call wait immediately 

in the parent process, which will block until the child process completes. But often, you’ll want 

the parent process to continue running, as one or more children execute synchronously. How 

can you be sure that you clean up child processes that have completed so that you don’t leave 

zombie processes, which consume system resources, lying around?

One approach would be for the parent process to call wait3 or wait4 periodically, to clean up 

zombie children. Calling wait for this purpose doesn’t work well because, if no children have 

terminated, the call will block until one does. However, wait3 and wait4 take an additional flag 

parameter, to which you can pass the flag value WNOHANG. With this flag, the function runs 

in nonblocking mode—it will clean up a terminated child process if there is one, or simply 

return if there isn’t. The return value of the call is the process ID of the terminated child in the 

former case, or zero in the latter case.

A more elegant solution is to notify the parent process when a child terminates. There are 

several ways to do this using the methods of “Interprocess Communication,” but fortunately 

Linux does this for you, using signals. When a child process terminates, Linux sends the parent 

process the SIGCHLD signal. The default disposition of this signal is to do nothing, which is 

why you might not have noticed it before. Thus, an easy way to clean up child processes is by 

handling SIGCHLD. Of course, when cleaning up the child process, it’s important to store its 

termination status if this information is needed, because once the process is cleaned up using 

wait, that information is no longer available. The program “sigchld.c” provided below is what it 

looks like for a program to use a SIGCHLD handler to clean up its child processes.

Systems Programming

122



Unit 3.  Processes,Threads and Memory management 

//Program “sigchld.c” - Cleaning Up Children by Handling SIGCHLD

#include <signal.h>

#include <string.h>

#include <sys/types.h>

#include <sys/wait.h>

sig_atomic_t child_exit_status;

void clean_up_child_process (int signal_number)

{

    /* Clean up the child process. */

    int status;

    wait (&status);

     /* Store its exit status in a global variable. */

     child_exit_status = status;

}

int main ()

{

     /* Handle SIGCHLD by calling clean_up_child_process. */

     struct sigaction sigchld_action;

     memset (&sigchld_action, 0, sizeof (sigchld_action));

     sigchld_action.sa_handler = &clean_up_child_process;

     sigaction (SIGCHLD, &sigchld_action, NULL);

     /* Now do things, including forking a child process. */

      /* ... */

   return 0;

}

Note how the signal handler stores the child process’s exit status in a global variable, from 

which the main program can access it. Because the variable is assigned in a signal handler, its 

type is sig_atomic_t.

123



Conclusion
In this activity we presented the process concepts and explained various techniques and tools 

for creating and working with processes. In particular, process creation using the system,  fork 

and exec functions was presented. Further, the management and manipulation of processes 

using various system signals was highlighted.

  Assessment
1.  Practice the example code provided in this activity

Activity 2 - Threads

Introduction

We’ve seen how a program can fork a child process. The child process is initially running its 

parent’s program, with its parent’s virtual memory, file descriptors, and so on copied. The 

child process can modify its memory, close file descriptors, and the like without affecting its 

parent, and vice versa. When a program creates another thread, though, nothing is copied. 

The creating and the created thread share the same memory space, file descriptors, and other 

system resources as the original. If one thread changes the value of a variable, for instance, 

the other thread subsequently will see the modified value. Similarly, if one thread closes a file 

descriptor, other threads may not read from or write to that file descriptor. 

Each thread in a process is identified by a thread ID. When referring to thread IDs in C or C++ 

programs, use the type pthread_t. Upon creation, each thread executes a thread function. 

This is just an ordinary function and contains the code that the thread should run.  When the 

function returns, the thread exits. On GNU/Linux, thread functions take a single parameter, of 

type void*, and have a void* return type. The parameter is the thread argument: GNU/Linux 

passes the value along to the thread without looking at it. Your program can use this parameter 

to pass data to a new thread. Similarly, your program can use the return value to pass data 

from an exiting thread back to its creator.

The pthread_create function creates a new thread. You provide it with the following:

i. A pointer to a pthread_t variable, in which the thread ID of 
the new thread is stored.

ii. A pointer to a thread attribute object. This object controls 
details of how the thread interacts with the rest of the program. 
If you pass NULL as the thread attribute, a thread will be 
created with the default thread attributes. Thread attributes 
are presented in later section,“Thread Attributes.”

iii. A pointer to the thread function. This is an ordinary function 
pointer, of this type:

Systems Programming

124



Unit 3.  Processes,Threads and Memory management 

iv. void* (*) (void*)

v. A thread argument value of type void*. Whatever you pass 
is simply passed as the argument to the thread function when 
the thread begins executing.

A call to pthread_create returns immediately, and the original thread continues executing the 

instructions following the call. Meanwhile, the new thread begins executing the thread function. 

Linux schedules both threads asynchronously, and your program must not rely on the relative 

order in which instructions are executed in the two threads.The program “thread-create.c” 

provided below creates a thread that prints x’s continuously to standard error. After calling 

pthread_create, the main thread prints o’s continuously to standard error.

//Program “thread-create.c” - Create a Thread

#include <pthread.h>

#include <stdio.h>

/* Prints x’s to stderr. The parameter is unused. Does not return. */

void* print_xs (void* unused)

{

while (1)

fputc (‘x’, stderr);

return NULL;

}

/* The main program. */

int main ()

{

pthread_t thread_id;

/* Create a new thread. The new thread will run the print_xs

function. */

pthread_create (&thread_id, NULL, &print_xs, NULL);

/* Print o’s continuously to stderr. */

while (1)

fputc (‘o’, stderr);

return 0;

}

125



Compile and link this program using the following code:

$ cc -o thread-create thread-create.c -lpthread

Try running it to see what happens. Notice the unpredictable pattern of x’s and o’s as Linux 

alternately schedules the two threads. Under normal circumstances, a thread exits in one of 

two ways. One way, as illustrated previously, is by returning from the thread function. The 

return value from the thread function is taken to be the return value of the thread. Alternately, 

a thread can exit explicitly by calling pthread_exit. This function may be called from within the 

thread function or from some other function called directly or indirectly by the thread function. 

The argument to pthread_exit is the thread’s return value.

Activity Details
Passing Data to Threads

The thread argument provides a convenient method of passing data to threads. Because the 

type of the argument is void*, though, you can’t pass a lot of data directly via the argument. 

Instead, use the thread argument to pass a pointer to some structure or array of data. One 

commonly used technique is to define a structure for each thread function, which contains the 

“parameters” that the thread function expects.

Using the thread argument, it’s easy to reuse the same thread function for many threads. All 

these threads execute the same code, but on different data. The program “thread-create2” 

given below is similar to the previous example. This one creates two new threads, one to print 

x’s and the other to print o’s. Instead of printing infinitely, though, each thread prints a fixed 

number of characters and then exits by returning from the thread function. The same thread 

function, char_print, is used by both threads, but each is configured differently using struct 

char_print_parms.

//Program “thread-create2” - Create Two Threads

#include <pthread.h>

#include <stdio.h>

/* Parameters to print_function. */

struct char_print_parms

{

/* The character to print. */

char character;

/* The number of times to print it. */

int count;

};

/* Prints a number of characters to stderr, as given by PARAMETERS,

Systems Programming

126



Unit 3.  Processes,Threads and Memory management 

which is a pointer to a struct char_print_parms. */

void* char_print (void* parameters)

{

/* Cast the cookie pointer to the right type. */

struct char_print_parms* p = (struct char_print_parms*)  parameters;

int i;

for (i = 0; i < p->count; ++i)

fputc (p->character, stderr);

return NULL;

}

/* The main program. */

int main ()

{

pthread_t thread1_id;

pthread_t thread2_id;

struct char_print_parms thread1_args;

struct char_print_parms thread2_args;

/* Create a new thread to print 30,000 ’x’s. */

thread1_args.character = ’x’;

thread1_args.count = 30000;

pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20,000 o’s. */

thread2_args.character = ’o’;

thread2_args.count = 20000;

pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

return 0;

}

127



But wait! The program “thread-create2” has a serious bug in it. The main thread (which runs 

the main function) creates the thread parameter structures (thread1_args and thread2_args) 

as local variables, and then passes pointers to these structures to the threads it creates. What 

can prevent Linux from scheduling the three threads in such a way that main finishes executing 

before either of the other two threads are done? Nothing! But if this happens, the memory 

containing the thread parameter structures will be deallocated while the other two threads are 

still accessing it!!

Joining Threads

One solution is to force main to wait until the other two threads are done. What we need is 

a function similar to wait that waits for a thread to finish instead of a process. That function is 

pthread_join, which takes two arguments: the thread ID of the thread to wait for, and a pointer 

to a void* variable that will receive the finished thread’s return value. If you don’t care about 

the thread return value, pass NULL as the second argument.

The revised main program provided below shows the corrected main function for the buggy 

example program “thread-create2.c”. In this version, main does not exit until both of the 

threads printing x’s and o’s have completed, so they are no longer using the argument 

structures.

// Revised main function for program “thread-create2.c”

int main ()

{

pthread_t thread1_id;

pthread_t thread2_id;

struct char_print_parms thread1_args;

struct char_print_parms thread2_args;

/* Create a new thread to print 30,000 x’s. */

thread1_args.character = ’x’;

thread1_args.count = 30000;

pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20,000 o’s. */

thread2_args.character = ’o’;

thread2_args.count = 20000;

pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

/* Make sure the first thread has finished. */

pthread_join (thread1_id, NULL);

Systems Programming

128



Unit 3.  Processes,Threads and Memory management 

/* Make sure the second thread has finished. */

pthread_join (thread2_id, NULL);

/* Now we can safely return. */

return 0;

}

The moral of the story: Make sure that any data you pass to a thread by reference is not 

deallocated, even by a different thread, until you’re sure that the thread is done with it. This is 

true both for local variables, which are deallocated when they go out of scope, and for heap-

allocated variables, which you deallocate by calling free (or using delete in C++).

Thread Return Values

If the second argument you pass to pthread_join is non-null, the thread’s return value will be 

placed in the location pointed to by that argument. The thread return value, like the thread 

argument, is of type void*. If you want to pass back a single int or other small number, you can 

do this easily by casting the value to void* and then casting back to the appropriate type after 

calling pthread_join. 

The program “primes.c” given below computes the nth prime number in a separate thread. 

That thread returns the desired prime number as its thread return value. The main thread, 

meanwhile, is free to execute other code. Note that the successive division algorithm used in 

compute_prime function is quite inefficient; consult a book on numerical algorithms if you need 

to compute many prime numbers in your programs.

//Program “primes.c” - Compute Prime Numbers in a Thread

#include <pthread.h>

#include <stdio.h>

/* Compute successive prime numbers (very inefficiently). Return the

Nth prime number, where N is the value pointed to by *ARG. */

void* compute_prime (void* arg)

{

int candidate = 2;

int n = *((int*) arg);

while (1) {

int factor;

int is_prime = 1;

/* Test primality by successive division. */

129



for (factor = 2; factor < candidate; ++factor)

if (candidate % factor == 0) {

is_prime = 0;

break;

}

/* Is this the prime number we’re looking for? */

if (is_prime) {

if (--n == 0)

/* Return the desired prime number as the thread return value. */

return (void*) candidate;

}

++candidate;

}

return NULL;

}

int main ()

{

pthread_t thread;

int which_prime = 5000;

int prime;

/* Start the computing thread, up to the 5,000th prime number. */

pthread_create (&thread, NULL, &compute_prime, &which_prime);

/* Do some other work here... */

/* Wait for the prime number thread to complete, and get the result. */

pthread_join (thread, (void*) &prime);

/* Print the largest prime it computed. */

printf(“The %dth prime number is %d.\n”, which_prime, prime);

return 0;

  }

Systems Programming

130



Unit 3.  Processes,Threads and Memory management 

More on Thread Ids

Occasionally, it is useful for a sequence of code to determine which thread is executing it. The 

pthread_self function returns the thread ID of the thread in which it is called. This Thread ID 

may be compared with another thread ID using the pthread_equal function. These functions 

can be useful for determining whether a particular thread ID corresponds to the current thread. 

For instance, it is an error for a thread to call pthread_join to join itself. (In this case, pthread_

join would return the error code EDEADLK.) To check for this beforehand, you might use code 

like this:

if (!pthread_equal (pthread_self (), other_thread))

pthread_join (other_thread, NULL);

Thread Attributes

Thread attributes provide a mechanism for fine-tuning the behavior of individual threads. 

Recall that pthread_create accepts an argument that is a pointer to a thread attribute object. 

If you pass a null pointer, the default thread attributes are used to configure the new thread. 

However, you may create and customize a thread attribute object to specify other values for 

the attributes.

To specify customized thread attributes, you must follow these steps:

i. Create a pthread_attr_t object. The easiest way is simply to declare an automatic 

variable of this type.

ii. Call pthread_attr_init, passing a pointer to this object. This initializes the attributes to 

their default values.

iii. Modify the attribute object to contain the desired attribute values.

iv. Pass a pointer to the attribute object when calling pthread_create.

v. Call pthread_attr_destroy to release the attribute object. The pthread_attr_t variable 

itself is not deallocated; it may be reinitialized with pthread_attr_init.

A single thread attribute object may be used to start several threads. It is not necessary to 

keep the thread attribute object around after the threads have been created. For most GNU/

Linux application programming tasks, only one thread attribute is typically of interest (the 

other available attributes are primarily for specialty real-time programming). This   attribute is 

the thread’s detach state. A thread may be created as a joinable thread (the default) or as a 

detached thread. A joinable thread, like a process, is not automatically cleaned up by GNU/

Linux when it terminates. Instead, the thread’s exit state hangs around in the system (kind of 

like a zombie process) until another thread calls pthread_join to obtain its return value. Only 

then are its resources released. A detached thread, in contrast, is cleaned up automatically 

when it terminates. Because a detached thread is immediately cleaned up, another thread may 

not synchronize on its completion by using pthread_join or obtain its return value.

131



To set the detach state in a thread attribute object, use pthread_attr_setdetachstate. The first 

argument is a pointer to the thread attribute object, and the second is the desired detach 

state. Because the joinable state is the default, it is necessary to call this only to create 

detached threads; pass PTHREAD_CREATE_DETACHED as the second argument. The program 

“detached.c” given below creates a detached thread by setting the detach state thread 

attribute for the thread.

//Program “detached.c” - Skeleton Program That Creates a Detached 

Thread

#include <pthread.h>

void* thread_function (void* thread_arg)

{

/* Do work here... */

}

int main ()

{

pthread_attr_t attr;

pthread_t thread;

pthread_attr_init (&attr);

pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);

pthread_create (&thread, &attr, &thread_function, NULL);

pthread_attr_destroy (&attr);

/* Do work here... */

/* No need to join the second thread. */

return 0;

}

Even if a thread is created in a joinable state, it may later be turned into a detached thread. To 

do this, call pthread_detach. Once a thread is detached, it cannot be made joinable again.

Conclusion
In this activity we presented the thread concepts and explained various techniques and tools 

for creating and managing thread execution. In particular, thread creation using pthread_create 

function was presented. Further, various threads management techniques were highlighted.

Systems Programming

132



Unit 3.  Processes,Threads and Memory management 

  Assessment
  1. Practice the example code provided in this activity

Activity 3 - Memory Management

Introduction

Memory is the primary data storage area for computers. We call the basic memory unit a bit. A 

bit may contain two different values: either 0 or 1. Why do computers use binary arithmetic? It 

is the most reliable and efficient way to express data. Because, the digital information can be 

stored as voltage. We have to distinguish each different value. If we have more values (such as 

decimal system), it causes less separation between adjacent values. But with two values (binary 

system: 0 and 1) different values will be distinguished with maximum distance. Like a rule: To 

get the most distance we must use two points. The distance will be distance of the rule.

Memory consists of a number of cells which can store some number of bits. The memory is just 

a byte array. Each cell has a number to identify it, called its address. Programs refer addresses 

to reach memory. Adjacent cells have consecutive addresses. If memory has m cells, the cells 

will have addresses 0 to m-1. If CPU supports n bit, it can refer addresses from 0 to 2^n – 1. 

For example, Intel Pentium II is a 32-bit CPU and can address 4 GBytes of memory. Each cell 

stores an integer. An integer is n-bit number. It is 32 bit (4 bytes) if you have Intel Pentium 

II. Therefore, the maximum addressable memory size = n * 2^n. In recent years, nearly all 

manufactures have standardized on an 8-bit cell which is called byte. Bytes are grouped into 

words. A 32-bit CPU has 4-bytes/word. A CPU with 32-bit registers can holds 32-bits at a time. 

For that reason, registers that access to memory are also 32 bits. So it can point maximum to 

11111111111111111111111111111111 in binary format (0xFFFFFFFF in hexal form). That is 

same with the 2^n – 1.

In the early years, computer memories were small and more expensive. Programmers were 

using a total memory size of only 4096 18-bit words for both user programs and operating 

system in PDP-1. So, the programmer had to fit his program in this small memory. Nowadays, 

computers have some gigabytes of memory but the modern programs need much more 

memory. To solve this problem, operating systems use secondary memories such as disk as 

main memory. In the first technique, the programmer divided the program up into a number of 

pieces called overlays. At the start of the program, first overlay was loaded into memory. When 

it finished, loads next overlay. Programmers must manage overlays between memory and disk. 

Programmer was responsible to find it from disk and load it to memory. This was a difficult 

undertaking for programmers.

133



In 1961, a group of researchers from Manchester established automatic overlay management 

system called virtual memory. Virtual memory is organized into “pages”. A page is a memory 

unit typically a few Kbytes in size. It is mostly 4-Kbytes. You can learn page size by typing 

pagesize command in Linux/Unix. When a program references to an address on a page not 

present in main memory, a page fault occurs. After a page fault, the operating system seeks 

for the corresponding page on the disk and loads it onto main memory by using a page 

replacement algorithm such as LRU (Least Recently Used (LRU) - works on the idea that pages 

that have been most heavily used in the past few instructions are most likely to be used heavily 

in the next few instructions too). 

That way programmer can start a program when none of the program is in main memory. When 

the CPU tries to fetch the first instruction of the program, it gets a page fault, because the 

memory doesn’t contain any piece of the program in the main memory. This method is called 

demand paging. If a process in main memory has low priority or is sleeping, that means it 

won’t run soon. In this case, the process can be backed up on disk by the operating system. 

This process is swapped out. The swap space is used for holding memory data. Processes use 

virtual addresses for transparency. They don’t know about physical memory. CPU has a unit 

called Memory Management Unit (MMU) which is responsible for operating virtual memory. 

When a process makes a reference to a page that isn’t in main memory, the MMU generates 

a page fault. The kernel catches it and decides whether the reference is valid or not. If invalid, 

the kernel sends signal “segmentation violation” to the process. If valid, the kernel retrieves 

the page process referenced from the disk.

Activity details
Memory Layout for a Process

Memory is an array of words. But it is not functional with this simple structure. Operating 

systems divide it into some pieces each one has its custom behaviour. For example, the kernel 

may protect a part of process memory against write and execute. In the process memory, each 

memory section which has different behaviours is called segment.

When a program is loaded into memory, it resides in memory as shown by the following 

memory layout:

+---------------------------+--------------------------+--------------

+---------------+---------------+

 |   Code segment(r+x)  |   Data segment(r+w)  |  BSS(r+w)  |  

Heap(r+w)  |  Stack(r+w)  |

+---------------------------+--------------------------+--------------

+---------------+---------------+

Systems Programming

134



Unit 3.  Processes,Threads and Memory management 

A. Code(Text) Segment

This is the area in which the executable instructions reside. In the Linux/UNIX world, it is called 

as “text segment”. It has an execute permission. Some old architecture allowed the code 

change itself. For that reason, the code segment had also the ‘write’ permission.

Suppose we have a function named func(), and addr points somewhere in the code segment. 

Because functions reside in code segment, therefore, addr = &func;

B.Data Segment

It contains initialized global variables declared by programmer. Global variables have a fixed 

area in memory where they will be defined at startup.

C.BSS

It contains uninitialized global variables.

D.Heap

It contains variables generated dynamically at runtime. Data segment holds variables which we 

create at compile time. So it is fixed in size. Often, the programmer needs to create variables at 

runtime. This is called dynamic memory allocation. Modern C libraries provide some functions 

to allocate area from heap like malloc().The  free() function destroys variables which have been 

dynamically allocated from heap space. 

Everything is unnamed in the heap. You cannot reach any variable directly by using its name. 

But you can reference indirectly using a pointer.  The end of the heap is marked by a pointer 

called “break”. When a program reference past the break, it will break. When the heap 

manager needs more memory, it calls brk() and sbrk() system calls. The brk() and sbrk() functions 

are used to change the amount of memory allocated in a process’s data segment. They do 

this by moving the location of the `break’. The break is the first address after the end of the 

process’s uninitialized data segment (also known as the `BSS’). 

NAME                                          

              brk, sbrk 

 -- change data segment size

LIBRARY

            Standard C Library (libc, -lc) 

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

 int brk(const void *addr);

void * sbrk(intptr_t incr);

135



The brk() function sets the break to addr. The sbrk() function raises the break by incr bytes, thus 

allocating at least incr bytes of new memory in the data segment. If incr is negative, the break 

is lowered by incr bytes. The current value of the break may be determined by calling sbrk(0).

E.Stack

Stack is a data structure which is accessed in last-in first-out order. There are two operations 

for stacks: To insert a new item, it must be PUSHed and to retrieve item, it must be POPped. 

SP(stack pointer) is a CPU register which points to the top of the stack. 

Data resides from higher addresses to lower addresses in stack. A function call is the typical 

usage of stack. What happens after a function call? Consider the program example below:

10] i = 4;

11] func(i);

12] k = 2;

13] ...

Note that CPU always executes instruction which IP(instruction pointer) shows. In above code, 

IP is 10 before calling func(). It will be the address of func() when func() is called. And then 

IP will be 12 after func() exited. Before func() call, we must save address of the next code 

line. Because we’ll return back after function exited and continue to execute program from 

next line. To store address of the next line, the program will use stack. After this step the 

program PUSHes function parameters (in above code, ‘i’ is the parameter) to stack, and then 

local variables of the function. When the function ends, it POPs local variables and function 

parameters orderly. Thus, only address of the next line (in above code, it is 12) remains in the 

stack. The return is a CPU specific instruction. After return, the address will be POPped from 

stack and will be assigned to IP. Hence the program will continue execution from line 12.

Memory Leak

A memory leak is where allocated memory is not freed although it is never used again. There 

are two common types of heap problems:

i. Freeing or overwriting data that is still in use will cause “memory corruption”.

ii. Not freeing data which is no longer in use will cause “memory leak”.

If the memory leak is in a loop, after a while the program will consume all of the memory. 

You will see that, your operating system is getting slower. A good programmer always frees 

allocated memory explicitly. Whenever he uses malloc(), puts a corresponding free() statement. 

Garbage collection (GC), also known as automatic memory management, is the automatic 

recycling of dynamically allocated memory. Garbage collection is performed by a garbage 

collector which frees memory that will never be used again. There are many ways for automatic 

memory managers to determine what memory is no longer required. In the main, garbage 

collection relies on determining which blocks are not pointed to by any program variables. 

Systems Programming

136



Unit 3.  Processes,Threads and Memory management 

Garbage collection was first invented by John McCarthy in 1958 as part of the implementation 

of Lisp. Systems and languages which use garbage collection can be described as garbage-

collected. Java, Prolog, Smalltalk etc. are garbage collected languages. C provides more 

control over program to programmer. For that reason it doesn’t worry about freeing unused 

memory.  All local variables in the stack will be freed and available for reuse after exit from its 

scope. But dynamic allocated variables will not be freed without a garbage collector. Since C 

doesn’t usually perform garbage collection, programmers must be careful if they use malloc().

Why we need dynamic memory allocation? All variables declared statically at the compile time 

at stack, will be destroyed while functions are exiting (when the main function in the program 

will be exiting). But sometimes the programmer cannot know how much space the program 

needs. For example, the program reads spam words from a file and put them onto the memory. 

There may be 10 lines or 1,000 lines. If we assume a line can be maximum 32-bytes, then in 

the first case we need 320-bytes of memory and in the second case we need 32,000-bytes of 

memory. As result, the programmer doesn’t know about memory requirements beforehand. 

As a solution he can allocate 1000 word lines statically. But if we have 100 words, this will waste 

our memory. Or if the spam database is so big (for example 10,000 lines) the program won’t 

work correctly. 

char wordtable[1000][32];

The best solution is using dynamic memory. The program allocates 32-bytes for each line in a 

loop.

NAME

malloc, calloc, realloc, free, reallocf 

-- general purpose memory allocation functions 

LIBRARY

Standard C Library (libc, -lc)

SYNOPSIS

#include <stdlib.h>

void * malloc(size_t size);

void free(void *ptr);

The malloc() function allocates size bytes of memory. The free() function causes the allocated 

memory referenced by ptr to be made available for future allocations.

137



The following code illustrates a basic memory leak programming mistake:

01]

02] int main()

03] {

04] char* str;

05] char* tmp;

06]

07] str = malloc(sizeof(char)*32);

08] tmp = malloc(sizeof(char)*32);

09] fscanf(stdin, “%s”, str);

10] tmp = str;

11]

12] do_something_with_tmp();

13] do_something_with_str();

14] free(str);

15] free(tmp);

16]

17] return 0;

18] }

19]

In line 10, the programmer is using tmp pointer to preserve address of str pointer. Then 

performing some processes with tmp. And then using str. In line 14 and 15, he is freeing 

pointers like a good programmer. But he forgets his assignment (tmp = str). Line 14 will 

succeed, but line 15 will fail if tmp still points at str. Because str cannot be de-allocated again. 

Another point is that, the programmer lost address of tmp allocated at line 8. So he never frees 

tmp.

Pointers

A pointer is a group of cells (often two or four) that can hold an address. If ch is a char and p is 

a pointer to this char:

Systems Programming

138



Unit 3.  Processes,Threads and Memory management 

                       p                        &ch

+-----+------+------+-----+-----+-------+-----+

|   ...   |   ...   | &ch |........ |.......|  char  |   ...  |

+------+-----+------+-----+-----+-------+-----+

The unary operator & gives the address of an object. The indirection or dereference operator 

* gives the “contents of an object pointed by a pointer’’. To declare a pointer we use 

dereference operator.

Consider the program “ptr.c”  below which demonstrates use of pointers:

//Program ptr.c – Use of pointers

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main()

5 {

6 char ch1 = ‘g’;

7 char ch2 = ‘s’;

8 char *ptr;

9

10 printf(“Char 1 is %c\n”, ch1);

11 printf(“Char 2 is %c\n”, ch2);

12

13 printf(“Address of Char 1 is %p\n”, &ch1);

14 printf(“Address of Char 2 is %p\n”, &ch2);

15

16 ptr = &ch1;

17 ch2 = *ptr;

18

19 printf(“Char 1 is %c\n”, ch1);

20 printf(“Char 2 is %c\n”, ch2);

21

139



22 printf(“Address of ptr is %p\n”, ptr);

23

24 return 0;

25 }

We declared two char variables in line 6 and 7. Then we declared a char pointer in line 8. ptr 

is a variable which contains address of ch1 after line 16. ch2 is assigned to value “resides in 

address ptr points” in line 17. The address ptr points to address of ch1 because of line 16. So 

these two lines are equal to the following line:

ch2 = ch1;

We can make arithmetic operations on pointers.

ptr++;  /* Points next address. */

(*ptr)++;  /* Increments what ptr points to. */

ptr++ increments ptr to point next object. It doesn’t increments ptr 

by 1 byte. Added value depends on the size of object. Management 

of dynamically created variables requires use of pointers. When the 

programmer need memory at runtime to store a data structure, he 

demands it by using malloc() function.

void * malloc(size_t size);

The malloc() function allocates size bytes of memory and returns a pointer to allocated space.

typedef struct rulelist rulelist;

struct rulelist {

int attr;

char ruleline[256];

rulelist *next;

};

rulelist *ll;

if((ll = (rulelist *) malloc(sizeof(rulelist))) == NULL) return -1;

Since C passes arguments to functions by value, there is no direct way for the called function 

to alter a variable in the calling function if it is not a global variable. All local variables are 

accessible locally. If you pass it to function and then alter its value, it doesn’t effect on variable 

of calling function.

Systems Programming

140



Unit 3.  Processes,Threads and Memory management 

void swap(int x, int y) /* WRONG */

{

int temp;

temp = x;

x = y;

y = temp;

}

swap(a, b);

But addresses are accessible from anywhere.

void swap(int *px, int *py) /* interchange *px and *py */

{

int temp;

temp = *px;

*px = *py;

*py = temp;

}

swap(&a, &b);

Pointer arguments enable a function to access and change objects in the function that called 

it. Pointer subtraction is also valid: if p and q point to elements of the same array, and p<q, 

then q-p+ 1 is the number of elements from p to q inclusive. This fact can be used to write yet 

another version of strlen:

int strlen(char *s)

{

char *p = s;

while (*p != ‘\0’)

p++;

return p - s;

}

In its declaration, p is initialized to s, that is, to point to the first character of the string. In the 

while loop, each character in turn is examined until the ‘\0’ at the end is seen. Because p points 

to characters, p++ advances p to the next character each time, and p-s gives the number of 

characters advanced over, that is, the string length.

141



IMPORTANT!!!

When a pointer is declared it does not point anywhere. Used this way program will crash. This 

is one of the famous security bug. You must set pointer variable to point somewhere before 

you use it. This can be by two ways: 

i. Allocating memory for this pointer 

ii. Assigning it to address of an existing variable.

int *Num;

*Num = 11;

The above code will crash. Correct code should be something like below:

int i = 5;

int *Num;

Num = &i;

*Num = 11;

Another way is allocating memory for the pointer from heap:

int *Num;

Num = (int *) malloc(sizeof(int));

*Num = 11;

Conclusion
In this activity we review the memory layout for processes and presented the memory 

management techniques in C programs. In particular, memory creation using the malloc 

function, the memory leak condition and use of pointers in C were highlighted.

Assessment
1. Write the following code which illustrates segments.

//mem.c

#include <stdio.h>

#include <stdlib.h>

int uig;

int ig = 5;

int func()

Systems Programming

142



Unit 3.  Processes,Threads and Memory management 

 {

return 0;

}

int main()

{

int local;

int *ptr;

ptr = (int *) malloc(sizeof(int));

printf(“An address from BSS: %p\n”, &uig);

printf(“An address from Data segment: %p\n”, &ig);

printf(“An address from Code segment: %p\n”, &func);

printf(“An address from Stack segment: %p\n”, &local);

printf(“An address from Heap: %p\n”, ptr);

printf(“Another address from Stack: %p\n”, &ptr);

free(ptr);

return 0;

}

Execute the code and examine last line of output, which shows another address 
from stack:

a. Why &ptr is in the stack segment?

b. Why distance is 4 byte between local and &ptr?

c. Why &ptr is less than &local?

2. Consider the program “ptr.c” given in section 1.3.2.3. Execute this program 
and examine the output. Observe that after line 7, Char1 and Char2 both are equal 
to ‘g’ (value of Char1). Notice also that, the address of ptr is equal to address of ch1.

143



  Unit Summary
In this unit we presented the process, thread and memory management concepts and 

highlighted the techniques and functions for creation and management. In particular, process 

creation functions were presented and the management and manipulation of processes using 

various system signals was highlighted. The thread creation function and various associated 

threads management techniques were described. Finally, memory creation function, the 

memory leak condition and use of pointers in C were explained.

    Unit Assessment
  Check your understanding!

  Miscellaneous Exercises

Instructions

1. Write the following C Program which Forks a Separate Process, save it, execute 
it and note down it’s output. 

int main()

{

Pid_t  pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

  fprintf(stderr, “Fork Failed”);

  exit(-1);

 }

 else if (pid == 0) { /* child process */

  execlp(“/bin/ls”, “ls”, NULL);

 }

 wait (NULL);

  printf (“Child Complete”);

  exit(0);

 }

}

Systems Programming

144



Unit 3.  Processes,Threads and Memory management 

2.Consider the code skeleton given below for the bounded-Buffer problem with Shared-

Memory Solution, which models the Paradigm for cooperating processes, producer process 

produces information that is consumed by a consumer process. The shared buffer is 

implemented as a circular array with two logical pointers: in and out. The variable in points to 

the next free position in the buffer; out points to the first full position in the buffer. The buffer 

is empty when in = out; the buffer is full when in + 1 mod n = out. Write a complete program 

that uses threads to implement the insert and remove functions. Save it, execute it and note 

down it’s output. Assume that the items are randomly generated integer numbers.

//Shared data

#define BUFFER_SIZE 10

Typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

// code for Insert function

while (true) {

   /* Produce an item */

       while (((in + 1) % BUFFER SIZE)  == out) ;  /*do nothing -- no 

free buffers */

     buffer[in] = item;

     in = (in + 1) % BUFFER SIZE;

     {

//code for remove function

while (true) {

          while (in == out)  ;  // do nothing -- nothing to consume

      // remove an item from the buffer

      item = buffer[out];

      out = (out + 1) % BUFFER SIZE;

 return item;

145



3. Consider the program below. Describe the state of the memory after line 10, 
12 and 14. What is the output of the program?

1 #include <stdio.h> 

2 int main() { 

3   int i = 0; 

4   int j = 2; 

5   int** p1; 

6   int* p2; 

7   int* p3; 

8   p2 = &i; 

9   p3 = &j; 

10   p1 = &p2; 

11   j = *p3 + 1; 

12   *p2 = **p1 - 1; 

13   p1 -= 2; 

14   *(p1[2]) = 3 * *p2; 

15   printf(“i = %d, j= %d\n”, i, j); 

16 return 0; 

17 }

Systems Programming

146



Unit 3.  Processes,Threads and Memory management 

Grading Scheme
As guided by the offering Institution Grading Regulation

Answers

mailto:njulumi@gmail.com

Unit Readings and Other Resources

1. Mark Mitchell, Jeffrey Oldham, and Alex Samuel; Advanced Linux 
Programming; Copyright © 2001 by New Riders Publishing; FIRST EDITION: 
June, 2001

2. Linux System Programming: Talking Directly to the Kernel and C Library, 
Robert Love “O’Reilly Media, Inc.”, 14 May 2013

3. Linux Kernel Development,  Robert Love, Pearson Education, 22 Jun 2010

147



Unit 4.  Inter Process 
Communication 
Unit Introduction
The previous unit on “processes,” discussed the creation of processes and showed how one 

process can obtain the exit status of a child process. That’s the simplest form of communication 

between two processes, but it’s by no means the most powerful. Since the mechanisms  don’t 

provide any way for the parent to communicate with the child except via command-line 

arguments and environment variables, nor any way for the child to communicate with the 

parent except via the child’s exit status. None of these mechanisms provides any means for 

communicating with the child process while it is not actually running, nor do these mechanisms 

allow communication with a process outside the parent-child relationship. 

In this unit we describe the means for inter-process communication that circumvent these 

limitations. We present various ways for communicating between parents and children, 

between “unrelated” processes, and even between processes on different machines. Inter-

process communication (IPC) is the transfer of data among processes. For example, a Web 

browser may request a Web page from a Web server, which then sends HTML data. This 

transfer of data usually uses sockets in a telephone-like connection. In another example, you 

may want to print the filenames in a directory using a command such as ls | lpr. The shell 

creates an ls process and a separate lpr process, connecting the two with a pipe, represented 

by the “|” symbol. A pipe permits one-way communication between two related processes. 

The ls process writes data into the pipe, and the lpr process reads data from the pipe.

In this unit, we will discuss three types of inter-process communication:

i. Pipes permit sequential communication from one process 
to a related process.

ii. FIFOs are similar  to pipes, except that unrelated processes 
can communicate because the pipe is given a name in the 
filesystem.

iii. Sockets support communication between unrelated 
processes even on different computers.

These types of IPC differ by the following criteria:

i. Whether they restrict communication to related processes (processes with a common 

ancestor), to unrelated processes sharing the same filesystem, or to any computer connected 

to a network

ii. Whether a communicating process is limited to only write data or only read data

iii. The number of processes permitted to communicate 

iv. Whether the communicating processes are synchronized by the IPC—for example, a 

reading process halts until data is available to read

Systems Programming

148



Unit 4.  Inter Process Communication 

Unit Objectives
Upon completion of this unit you should be able to:

• explain the inter-process communication concepts

• contrast the three types of IPC

• create each of three types of IPC

• apply  IPC mechanisms to manage collaboration among processes

Key Terms
Inter-process communication (IPC):Is the transfer of data among processes

Pipes:A pipe permits one-way communication between two related processes

FIFOs:Similar to pipes, except that unrelated processes can communicate 
because the pipe is given a name in the filesystem.

Sockets:Support communication between unrelated processes even on 
different computers.

    

  

Learning Activities

Activity 1 - Pipes

Introduction

A pipe is a communication device that permits unidirectional communication. Data written 

to the “write end” of the pipe is read back from the “read end.” Pipes are serial devices; the 

data is always read from the pipe in the same order it was written. Typically, a pipe is used to 

communicate between two threads in a single process or between parent and child processes.

In a shell, the symbol | creates a pipe. For example, this shell command causes the shell to 

produce two child processes, one for ls and one for less:

$ ls | less

The shell also creates a pipe connecting the standard output of the ls sub-process with the 

standard input of the less process. The filenames listed by ls are sent to less in exactly the 

same order as if they were sent directly to the terminal. A pipe’s data capacity is limited. If the 

writer process writes faster than the reader process consumes the data, and if the pipe cannot 

store more data, the writer process blocks until more capacity becomes available. If the reader 

tries to read but no data is available, it blocks until data becomes available. Thus, the pipe 

automatically synchronizes the two processes. 

149



Activity Details
Creating Pipes

To create a pipe, invoke the pipe command. Supply an integer array of size 2.The 
call to pipe stores the reading file descriptor in array position 0 and the writing file 
descriptor in position 1. For example, consider this code:

int pipe_fds[2];

int read_fd;

int write_fd;

pipe (pipe_fds);

read_fd = pipe_fds[0];

write_fd = pipe_fds[1];

Data written to the file descriptor read_fd can be read back from 

write_fd. 

Communication between Parent and Child Processes

A call to pipe creates file descriptors, which are valid only within that process and its children. A 

process’s file descriptors cannot be passed to unrelated processes; however, when the process 

calls fork, file descriptors are copied to the new child process. Thus, pipes can connect only 

related processes.

In the program “pipe.c” provided below, a fork spawns a child process. The child inherits the 

pipe file descriptors. The parent writes a string to the pipe, and the child reads it out. The 

sample program converts these file descriptors into FILE* streams using fdopen. Because we 

use streams rather than file descriptors, we can use the higher-level standard C library I/O 

functions such as printf and fgets.

//Program “pipe.c” - Using a Pipe to Communicate with a Child Process

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

/* Write COUNT copies of MESSAGE to STREAM, pausing for a second

between each. */

void writer (const char* message, int count, FILE* stream)

{

Systems Programming

150



Unit 4.  Inter Process Communication 

for (; count > 0; --count) {

/* Write the message to the stream, and send it off immediately. */

fprintf (stream, “%s\n”, message);

fflush (stream);

/* Snooze a while. */

sleep (1);

}

}

/* Read random strings from the stream as long as possible. */

void reader (FILE* stream)

{

char buffer[1024];

/* Read until we hit the end of the stream. fgets reads until

either a newline or the end-of-file. */

while (!feof (stream) && !ferror (stream) && fgets (buffer, sizeof 

(buffer), 

stream) != NULL) fputs (buffer, stdout);

}

int main ()

{

int fds[2];

pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are

placed in fds. */

pipe (fds);

/* Fork a child process. */

pid = fork ();

if (pid == (pid_t) 0) {

FILE* stream;

/* This is the child process. Close our copy of the write end of

151



the file descriptor. */

close (fds[1]);

/* Convert the read file descriptor to a FILE object, and read

from it. */

stream = fdopen (fds[0], “r”);

reader (stream);

close (fds[0]);

}

else {

/* This is the parent process. */

FILE* stream;

/* Close our copy of the read end of the file descriptor. */

close (fds[0]);

/* Convert the write file descriptor to a FILE object, and write

to it. */

stream = fdopen (fds[1], “w”);

writer (“Hello, world.”, 5, stream);

close (fds[1]);

}

return 0;

}

At the beginning of main, fds is declared to be an integer array with size 2.The pipe call creates 

a pipe and places the read and write file descriptors in that array. The program then forks a 

child process. After closing the read end of the pipe, the parent process starts writing strings 

to the pipe. After closing the write end of the pipe, the child reads strings from the pipe. Note 

that after writing in the writer function, the parent flushes the pipe by calling fflush. Otherwise, 

the string may not be sent through the pipe immediately.

When you invoke the command ls | less, two forks occur: one for the ls child process and one 

for the less child process. Both of these processes inherit the pipe file descriptors so they can 

communicate using a pipe. To have unrelated processes communicate, use a FIFO instead, as 

will be discussed in later sections on “FIFOs.”

Systems Programming

152



Unit 4.  Inter Process Communication 

Redirecting the Standard Input, Output, and Error Streams

Frequently, you’ll want to create a child process and set up one end of a pipe as its standard 

input or standard output. Using the dup2 call, you can equate one file descriptor with another. 

For example, to redirect a process’s standard input to a file descriptor fd, use this line:

dup2 (fd, STDIN_FILENO);

The symbolic constant STDIN_FILENO represents the file descriptor for the standard input, 

which has the value 0.The call closes standard input and then reopens it as a duplicate of fd so 

that the two may be used interchangeably. Equated file descriptors share the same file position 

and the same set of file status flags. Thus, characters read from fd are not reread from standard 

input.

The program “dup2.c” given below uses dup2 to send the output from a pipe to the sort 

command (sort reads lines of text from standard input, sorts them into alphabetical order, and 

prints them to standard output).  After creating a pipe, the program forks. The parent process 

prints some strings to the pipe. The child process attaches the read file descriptor of the pipe 

to its standard input using dup2. It then executes the sort program.

//Program “dup2.c” - Redirect Output from a Pipe with dup2

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

int main ()

{

int fds[2];

pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are

placed in fds. */

pipe (fds);

/* Fork a child process. */

pid = fork ();

   if (pid == (pid_t) 0) {

/* This is the child process. Close our copy of the write end of

the file descriptor. */

close (fds[1]);

153



/* Connect the read end of the pipe to standard input. */

dup2 (fds[0], STDIN_FILENO);

/* Replace the child process with the “sort” program. */

execlp (“sort”, “sort”, 0);

    }

    else {

/* This is the parent process. */

FILE* stream;

/* Close our copy of the read end of the file descriptor. */

close (fds[0]);

/* Convert the write file descriptor to a FILE object, and write

to it. */

stream = fdopen (fds[1], “w”);

fprintf (stream, “This is a test.\n”);

fprintf (stream, “Hello, world.\n”);

fprintf (stream, “My dog has fleas.\n”);

fprintf (stream, “This program is great.\n”);

fprintf (stream, “One fish, two fish.\n”);

fflush (stream);

close (fds[1]);

/* Wait for the child process to finish. */

waitpid (pid, NULL, 0);

    }

return 0;

}

popen and pclose

A common use of pipes is to send data to or receive data from a program being run in a sub-

process. The popen and pclose functions ease this paradigm by eliminating the need to invoke 

pipe, fork, dup2, exec, and fdopen. Compare the program “popen.c” provided below, which 

uses popen and pclose, to the previous example program “dup2.c”. 

Systems Programming

154



Unit 4.  Inter Process Communication 

//Program “popen.c” - Example using popen

#include <stdio.h>

#include <unistd.h>

int main ()

{

FILE* stream = popen (“sort”, “w”);

fprintf (stream, “This is a test.\n”);

fprintf (stream, “Hello, world.\n”);

fprintf (stream, “My dog has fleas.\n”);

fprintf (stream, “This program is great.\n”);

fprintf (stream, “One fish, two fish.\n”);

return pclose (stream);

}

The call to popen creates a child process executing the sort command, replacing calls to 

pipe, fork, dup2, and execlp. The second argument, “w”, indicates that this process wants to 

write to the child process. The return value from popen is one end of a pipe; the other end is 

connected to the child process’s standard input. After the writing finishes, pclose closes the 

child process’s stream, waits for the process to terminate, and returns its status value.

The first argument to popen is executed as a shell command in a sub-process running /bin/sh. 

The shell searches the PATH environment variable in the usual way to find programs to execute. 

If the second argument is “r”, the function returns the child process’s standard output stream 

so that the parent can read the output. If the second argument is “w”, the function returns 

the child process’s standard input stream so that the parent can send data. If an error occurs, 

popen returns a null pointer. Call pclose to close a stream returned by popen. After closing the 

specified stream, pclose waits for the child process to terminate.

Conclusion
This activity presented a pipe as an IPC device that permits unidirectional communication. We 

described the constructs for creating a pipe, and how the pipe can be used for communication 

between Parent and Child Processes. Further, we showed how to redirect a process’s Standard 

Input, Output, and Error Streams, and the use of the popen and pclose functions to eliminate 

the need to invoke pipe, fork, dup2, exec, and fdopen functions.

  Assessment
1. Practice the example code provided in this activity

155



Activity 2 - FIFOs 

Introduction

A first-in, first-out (FIFO) file is a pipe that has a name in the filesystem. Any process can open 

or close the FIFO; the processes on either end of the pipe need not be related to each other. 

FIFOs are also called named pipes.

You can make a FIFO using the mkfifo command. Specify the path to the FIFO on the 

command line. For example, create a FIFO in /tmp/fifo by invoking this:

$mkfifo /tmp/fifo

$ls -l /tmp/fifo

prw-rw-rw- 1 samuel users 0 Jan 16 14:04 /tmp/fifo

The first character of the output from ls is p, indicating that this file is actually a FIFO (named 

pipe). In one window, read from the FIFO by invoking the following:

$ cat < /tmp/fifo

In a second window, write to the FIFO by invoking this:

$ cat > /tmp/fifo

Then type in some lines of text. Each time you press Enter, the line of text is sent through the 

FIFO and appears in the first window. Close the FIFO by pressing Ctrl+D in the second window. 

Remove the FIFO with this line:

$ rm /tmp/fifo

Activity Details
Creating a FIFO

Create a FIFO programmatically using the mkfifo function. The first argument is the path at 

which to create the FIFO; the second parameter specifies the pipe’s owner, group, and world 

permissions (File System Permissions). Because a pipe must have a reader and a writer, the 

permissions must include both read and write permissions. If the pipe cannot be created (for 

instance, if a file with that name already exists), mkfifo returns –1. Include <sys/types.h> and 

<sys/stat.h> if you call mkfifo.

Accessing a FIFO

Access a FIFO just like an ordinary file. To communicate through a FIFO, one program must 

open it for writing, and another program must open it for reading. Either low-level I/O 

functions (open, write, read, close, and so on) or C library I/O functions (fopen, fprintf, fscanf, 

fclose, and so on) may be used.

For example, to write a buffer of data to a FIFO using low-level I/O routines, you could use this 

code:

Systems Programming

156



Unit 4.  Inter Process Communication 

int fd = open (fifo_path, O_WRONLY);

write (fd, data, data_length);

close (fd);

To read a string from the FIFO using C library I/O functions, you could use this code:

FILE* fifo = fopen (fifo_path, “r”);

fscanf (fifo, “%s”, buffer);

fclose (fifo);

A FIFO can have multiple readers or multiple writers. Bytes from each writer are written 

atomically up to a maximum size of PIPE_BUF (4KB on Linux). Chunks from simultaneous writers 

can be interleaved. Similar rules apply to simultaneous reads.

Differences from Windows Named Pipes 

Pipes in the Win32 operating systems are very similar to Linux pipes (Refer to the Win32 library 

documentation for technical details about these). The main difference for Win32 is that named 

pipes functions are more like sockets. Win32 named pipes can connect processes on separate 

computers connected via a network. On Linux, sockets are used for this purpose. Also, Win32 

allows multiple reader-writer connections on a named pipe without interleaving data, and 

Win32 pipes can be used for two-way communication (Note that only Windows NT can create 

a named pipe; Windows 9x programs can form only client connections).

Conclusion
This activity presented a FIFO (also referred as “named pipes”) as an IPC device that permits 

unrelated process communication. We described the constructs for creating and accessing a 

FIFO and highlighted the differences of Linux from Windows named pipes.

  Assessment
1.Practice by making the example code provided in this activity into complete 
programs

Activity 3 - Sockets

Introduction

A socket is a bidirectional communication device that can be used to communicate with 

another process on the same machine or with a process running on other machines. Sockets 

permit communication between processes on different computers. Internet programs such as 

Telnet, rlogin, FTP, talk, and the World Wide Web use sockets. For example, you can obtain the 

WWW page from a Web server using the Telnet program because they both use sockets for 

network communications (Usually, you’d use telnet to connect a Telnet server for remote logins. 

But you can also use telnet to connect to a server of a different kind and then type comments 

directly at it).

157



  To open a connection to a WWW server at www.codesourcery.com, use telnet www.

codesourcery.com 80. The magic constant 80 specifies a connection to the Web server 

program running www.codesourcery.com instead of some other process. Try typing GET / after 

the connection is established. This sends a message through the socket to the Web server, 

which replies by sending the home page’s HTML source and then closing the connection—for 

example:

$ telnet www.codesourcery.com 80

Trying 206.168.99.1...

Connected to merlin.codesourcery.com (206.168.99.1).

Escape character is ‘^]’.

GET /

<html>

<head>

< m e t a  h t t p - e q u i v = ” C o n t e n t - T y p e ”  c o n t e n t = ” t e x t / h t m l ; 

charset=iso-8859-1”>

Activity Details
Socket Concepts

When you create a socket, you must specify three parameters: communication style, 

namespace, and protocol. A communication style controls how the socket treats transmitted 

data and specifies the number of communication partners. When data is sent through a socket, 

it is packaged into chunks called packets. The communication style determines how these 

packets are handled and how they are addressed from the sender to the receiver.

• Connection styles guarantee delivery of all packets in the order they were 
sent. If packets are lost or reordered by problems in the network, the receiver 
automatically requests their retransmission from the sender. 

A connection-style socket is like a telephone call: The addresses of the sender and receiver are 

fixed at the beginning of the communication when the connection is established.

Datagram styles do not guarantee delivery or arrival order. Packets may be lost or reordered 

in transit due to network errors or other conditions. Each packet must be labelled with its 

destination and is not guaranteed to be delivered. The system guarantees only “best effort,” 

so packets may disappear or arrive in a different order than shipping. A datagram-style socket 

behaves more like postal mail.  The sender specifies the receiver’s address for each individual 

message. 

Systems Programming

158



Unit 4.  Inter Process Communication 

A socket namespace specifies how socket addresses are written. A socket address identifies 

one end of a socket connection. For example, socket addresses in the “local namespace” are 

ordinary filenames. In “Internet namespace,” a socket address is composed of the Internet 

address (also known as an Internet Protocol address or IP address) of a host attached to the 

network and a port number. The port number distinguishes among multiple sockets on the 

same host. 

A protocol specifies how data is transmitted. Some protocols are TCP/IP, the primary 

networking protocols used by the Internet; the AppleTalk network protocol; and the UNIX 

local communication protocol. Not all combinations of styles, namespaces, and protocols are 

supported. 

System Calls

Sockets are more flexible than previously discussed communication techniques. These are the 

system calls involving sockets:

socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets

bind—Labels a server socket with an address

listen—Configures a socket to accept conditions

accept—Accepts a connection and creates a new socket for the connection

Sockets are represented by file descriptors.

A.Creating and Destroying Sockets

The socket and close functions create and destroy sockets, respectively. When you create a 

socket, specify the three socket choices: namespace, communication style, and protocol. For 

the namespace parameter, use constants beginning with PF_ (abbreviating “protocol families”).  

For example, PF_LOCAL or PF_UNIX specifies the local namespace, and PF_INET specifies 

Internet namespaces. For the communication style parameter, use constants beginning 

with SOCK_. Use SOCK_STREAM for a connection-style socket, or use SOCK_DGRAM for a 

datagram-style socket.The third parameter, the protocol, specifies the low-level mechanism to 

transmit and receive data. Each protocol is valid for a particular namespace-style combination. 

Because there is usually one best protocol for each such pair, specifying 0 is usually the correct 

protocol. If socket succeeds, it returns a file descriptor for the socket. You can read from or 

write to the socket using read, write, and so on, as with other file descriptors.  When you are 

finished with a socket, call close to remove it.

159



B.Calling connect

To create a connection between two sockets, the client calls connect, specifying the address 

of a server socket to connect to. A client is the process initiating the connection, and a server 

is the process waiting to accept connections. The client calls connect to initiate a connection 

from a local socket to the server socket specified by the second argument. The third argument 

is the length, in bytes, of the address structure pointed to by the second argument. Socket 

address formats differ according to the socket namespace.

C.Sending Information

Any technique to write to a file descriptor can be used to write to a socket. For further details, 

revisit the unit that presents Linux’s low-level I/O functions and some of the issues surrounding 

their use. The send function, which is specific to the socket file descriptors, provides an 

alternative to write with a few additional choices; see the man page for information.

Servers

A server’s life cycle consists of the creation of a connection-style socket, binding an address 

to its socket, placing a call to listen that enables connections to the socket, placing calls to 

accept incoming connections, and then closing the socket. Data isn’t read and written directly 

via the server socket; instead, each time a program accepts a new connection, Linux creates a 

separate socket to use in transferring data over that connection. In this section, we introduce 

bind, listen, and accept.An address must be bound to the server’s socket using bind if a client 

is to find it. Its first argument is the socket file descriptor. The second argument is a pointer 

to a socket address structure; the format of this depends on the socket’s address family. The 

third argument is the length of the address structure, in bytes. When an address is bound to a 

connection-style socket, it must invoke listen to indicate that it is a server. Its first argument is 

the socket file descriptor. The second argument specifies how many pending connections are 

queued. If the queue is full, additional connections will be rejected. This does not limit the total 

number of connections that a server can handle; it limits just the number of clients attempting 

to connect that have not yet been accepted.

A server accepts connection requests from a client by invoking accept. The first argument is 

the socket file descriptor. The second argument points to a socket address structure, which is 

filled with the client socket’s address. The third argument is the length, in bytes, of the socket 

address structure. The server can use the client address to determine whether it really wants to 

communicate with the client. The call to accept creates a new socket for communicating with 

the client and returns the corresponding file descriptor. The original server socket continues to 

accept new client connections. To read data from a socket without removing it from the input 

queue, use recv. It takes the same arguments as read, plus an additional FLAGS argument. A 

flag of MSG_PEEK causes data to be read but not removed from the input queue.

Systems Programming

160



Unit 4.  Inter Process Communication 

Local Sockets

Sockets connecting processes on the same computer can use the local namespace represented 

by the synonyms PF_LOCAL and PF_UNIX. These are called local sockets or UNIX-domain 

sockets. Their socket addresses, specified by filenames, are used only when creating 

connections. The socket’s name is specified in struct sockaddr_un. You must set the sun_family 

field to AF_LOCAL, indicating that this is a local namespace. The sun_path field specifies the 

filename to use and may be, at most, 108 bytes long. 

The actual length of struct sockaddr_un should be computed using the SUN_LEN macro. Any 

filename can be used, but the process must have directory write permissions, which permit 

adding files to the directory. To connect to a socket, a process must have read permission 

for the file. Even though different computers may share the same filesystem, only processes 

running on the same computer can communicate with local namespace sockets. 

The only permissible protocol for the local namespace is 0. Because it resides in a file system, a 

local socket is listed as a file. For example, notice the initial s:

$ ls -l /tmp/socket

srwxrwx--x 1 user group 0 Nov 13 19:18 /tmp/socket

Call unlink to remove a local socket when you’re done with it.

An Example Using Local Namespace Sockets

We illustrate sockets with two programs. The server program,”socket-server.c”, creates a local 

namespace socket and listens for connections on it. When it receives a connection, it reads 

text messages from the connection and prints them until the connection closes. If one of 

these messages is “quit,” the server program removes the socket and ends. The socket-server 

program takes the path to the socket as its command-line argument.

//Program “socket-server.c” -  Local Namespace Socket Server

#include <stdio.h> 

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <unistd.h>

/* Read text from the socket and print it out. Continue until the

socket closes. Return nonzero if the client sent a “quit”

message, zero otherwise. */

int server (int client_socket)

{

161



   while (1) {

int length;

char* text;

/* First, read the length of the text message from the socket. If

read returns zero, the client closed the connection. */

if (read (client_socket, &length, sizeof (length)) == 0)

return 0;

/* Allocate a buffer to hold the text. */

text = (char*) malloc (length);

/* Read the text itself, and print it. */

read (client_socket, text, length);

printf (“%s\n”, text);

/* Free the buffer. */

free (text);

/* If the client sent the message “quit,” we’re all done. */

if (!strcmp (text, “quit”))

return 1;

    }

}

int main (int argc, char* const argv[])

{

   const char* const socket_name = argv[1];

   int socket_fd;

struct sockaddr_un name;

   int client_sent_quit_message;

/* Create the socket. */

   socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);

/* Indicate that this is a server. */

   name.sun_family = AF_LOCAL;

   strcpy (name.sun_path, socket_name);

Systems Programming

162



Unit 4.  Inter Process Communication 

   bind (socket_fd, &name, SUN_LEN (&name));

/* Listen for connections. */

   listen (socket_fd, 5);

/* Repeatedly accept connections, spinning off one server() to deal

with each client. Continue until a client sends a “quit” message. */

   do {

struct sockaddr_un client_name;

socklen_t client_name_len;

int client_socket_fd;

/* Accept a connection. */

client_socket_fd = accept (socket_fd, &client_name, &client_name_len);

/* Handle the connection. */

client_sent_quit_message = server (client_socket_fd);

/* Close our end of the connection. */

close (client_socket_fd);

    }

while (!client_sent_quit_message);

/* Remove the socket file. */

close (socket_fd);

unlink (socket_name);

return 0;

}

The client program, “socket-client.c”, connects to a local namespace socket and sends a 

message. The name path to the socket and the message are specified on the command line.

//Program “socket-client.c” - Local Namespace Socket Client

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <unistd.h>

163



/* Write TEXT to the socket given by file descriptor SOCKET_FD. */

void write_text (int socket_fd, const char* text)

{

/* Write the number of bytes in the string, including

NUL-termination. */

int length = strlen (text) + 1;

write (socket_fd, &length, sizeof (length));

/* Write the string. */

write (socket_fd, text, length);

}

int main (int argc, char* const argv[])

{

const char* const socket_name = argv[1];

const char* const message = argv[2];

int socket_fd;

struct sockaddr_un name;

/* Create the socket. */

socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);

/* Store the server’s name in the socket address. */

name.sun_family = AF_LOCAL;

strcpy (name.sun_path, socket_name);

/* Connect the socket. */

connect (socket_fd, &name, SUN_LEN (&name));

/* Write the text on the command line to the socket. */

write_text (socket_fd, message);

close (socket_fd);

return 0;

}

Systems Programming

164



Unit 4.  Inter Process Communication 

Before the client sends the message text, it sends the length of that text by sending the bytes 

of the integer variable length. Likewise, the server reads the length of the text by reading from 

the socket into an integer variable. This allows the server to allocate an appropriately sized 

buffer to hold the message text before reading it from the socket.

To try this example, start the server program in one window. Specify a path to a socket—for 

example, /tmp/socket.

$./socket-server /tmp/socket

In another window, run the client a few times, specifying the same sockets path plus messages 

to send to the client:

$./socket-client /tmp/socket “Hello, world.”

$ ./socket-client /tmp/socket “This is a test.”

The server program receives and prints these messages. To close the server, send the message 

“quit” from a client:

$ ./socket-client /tmp/socket “quit”

The server program terminates.

Internet-Domain Sockets

UNIX-domain sockets can be used only for communication between two processes on 

the same computer. Internet-domain sockets, on the other hand, may be used to connect 

processes on different machines connected by a network. 

Sockets connecting processes through the Internet use the Internet namespace represented 

by PF_INET. The most common protocols are TCP/IP. The Internet Protocol (IP), a low-level 

protocol, moves packets through the Internet, splitting and rejoining the packets, if necessary. 

It guarantees only “best-effort” delivery, so packets may vanish or be reordered during 

transport. Every participating computer is specified using a unique IP number. The Transmission 

Control Protocol (TCP), layered on top of IP, provides reliable connection-ordered transport. It 

permits telephone-like connections to be established between computers and ensures that 

data is delivered reliably and in order.

Internet socket addresses contain two parts: a machine and a port number. This information 

is stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET to indicate that 

this is an Internet namespace address. The sin_addr field stores the Internet address of the 

desired machine as a 32-bit integer IP number. A port number distinguishes a given machine’s 

different sockets. Because different machines store multibyte values in different byte orders, 

use htons to convert the port number to network byte order. See the man page for ip for more 

information.

To convert human-readable hostnames, either numbers in standard dot notation (such as 

10.0.0.1) or DNS names (such as www.codesourcery.com) into 32-bit IP numbers, you can use 

gethostbyname. This returns a pointer to the struct hostent structure; the h_addr field contains 

the host’s IP number. 

165



Note that DNS names are useful because it is easier to remember names than numbers. The 

Domain Name Service (DNS) associates names such as www.codesourcery.com with computers’ 

unique IP numbers. DNS is implemented by a worldwide hierarchy of name servers, but you 

don’t need to understand DNS protocols to use Internet host names in your programs.

The sample program “socket-inet.c” provided below illustrates the use of Internet-domain 

sockets. The program obtains the home page from the Web server whose hostname is 

specified on the command line.

//Program socket-inet.c - Read from a WWW Server

#include <stdlib.h>

#include <stdio.h>

#include <netinet/in.h>

#include <netdb.h>

#include <sys/socket.h>

#include <unistd.h>

#include <string.h>

/* Print the contents of the home page for the server’s socket.

Return an indication of success. */

void get_home_page (int socket_fd)

{

   char buffer[10000];

   ssize_t number_characters_read;

/* Send the HTTP GET command for the home page. */

   sprintf (buffer, “GET /\n”);

   write (socket_fd, buffer, strlen (buffer));

/* Read from the socket. The call to read may not

    return all the data at one time, so keep

   trying until we run out. */

    while (1) {

number_characters_read = read (socket_fd, buffer, 10000);

if (number_characters_read == 0)

return;

/* Write the data to standard output. */

Systems Programming

166



Unit 4.  Inter Process Communication 

fwrite (buffer, sizeof (char), number_characters_read, stdout);

     }

}

int main (int argc, char* const argv[])

{ 

 int socket_fd;

   struct sockaddr_in name;

   struct hostent* hostinfo;

/* Create the socket. */

   socket_fd = socket (PF_INET, SOCK_STREAM, 0);

/* Store the server’s name in the socket address. */

    name.sin_family = AF_INET;

/* Convert from strings to numbers. */

    hostinfo = gethostbyname (argv[1]);

    if (hostinfo == NULL)

return 1;

   else

name.sin_addr = *((struct in_addr *) hostinfo->h_addr);

/* Web servers use port 80. */

name.sin_port = htons (80);

/* Connect to the Web server */

if (connect (socket_fd, &name, sizeof (struct sockaddr_in)) == -1) {

      perror (“connect”);

return 1;

      }

/* Retrieve the server’s home page. */

    get_home_page (socket_fd);

     return 0;

}

167



This program takes the hostname of the Web server on the command line (not a URL—that 

is, without the “http://”). It calls gethostbyname to translate the hostname into a numerical IP 

address and then connects a stream (TCP) socket to port 80 on that host. Web-Servers speak 

the Hypertext Transport Protocol (HTTP), so the program issues the HTTP GET command and 

the server responds by sending the text of the home page.

For example, to retrieve the home page from the Web site www.codesourcery.com, invoke this:

$ ./socket-inet www.codesourcery.com

<html>

< m e t a  h t t p - e q u i v = ” C o n t e n t - T y p e ”  c o n t e n t = ” t e x t / h t m l ; 

charset=iso-8859-1”>

...

Note on Standard Port Numbers: By convention, Web servers listen for connections on port 

80. Most Internet network services are associated with a standard port number. For example, 

secure Web servers that use SSL listen for connections on port 443, and mail servers (which 

speak SMTP) use port 25. On GNU/Linux systems, the associations between protocol/service 

names and standard port numbers are listed in the file /etc/services. The first column is the 

protocol or service name. The second column lists the port number and the connection type: 

tcp for connection-oriented, or udp for datagram. If you implement custom network services 

using Internet-domain sockets, use port numbers greater than 1024.

 Socket Pairs

As we saw previously, the pipe function creates two file descriptors for the beginning and end 

of a pipe. Pipes are limited because the file descriptors must be used by related processes and 

because communication is unidirectional. The socketpair function creates two file descriptors 

for two connected sockets on the same computer.These file descriptors permit two-way 

communication between related processes.  Its first three parameters are the same as those of 

the socket call: They specify the domain, connection style, and protocol. The last parameter is 

a two-integer array, which is filled with the file descriptions of the two sockets, similar to pipe. 

When you call socketpair, you must specify PF_LOCAL as the domain.

Conclusion
This activity presented socket as a bidirectional communication device that can be used to 

communicate with another process on the same machine or with a process running on other 

machines.  Various concepts related to sockets were described and demonstrated, including 

System calls involving sockets, servers and server’s life cycle, internet-domain sockets, and 

socket Pairs.

   Assessment
1. Practice the example code provided in this activity

Systems Programming

168



Unit 4.  Inter Process Communication 

 Unit Summary
This unit presented three type of IPC communication devices, the pipes, FIFOs and Sockets. 

A pipe permits one-way communication between two related processes. FIFOs are similar to 

pipes, except that unrelated processes can communicate because the pipe is given a name in 

the filesystem. Sockets support communication between unrelated.

processes even on different computers. The concepts behind each communication device were 

described, and the constructs for creation and manipulation of the device highlighted.  

  Unit Assessment
  Check your understanding!

  Miscellaneous Exercises

Instructions

Consider the code skeleton given below that demonstrates the bounded-Buffer 
problem, which models the Paradigm for cooperating processes. A producer 
process produces information that is consumed by a consumer process. Write a 
suite of working programs, that uses Pipes, FIFOs, and Sockets IPC mechanisms 
respectively as solution method for the bounded buffer problem.

//Shared data

#define BUFFER_SIZE 10

Typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

// code for Insert function

while (true) {

   /* Produce an item */

       while (((in + 1) % BUFFER SIZE)  == out) ;  /*do nothing -- no 

free buffers */

     buffer[in] = item;

169



    in = (in + 1) % BUFFER SIZE;
     {

//code for remove function

while (true) {

          while (in == out)  ;  // do nothing -- nothing to consume

      // remove an item from the buffer

      item = buffer[out];

      out = (out + 1) % BUFFER SIZE;

 return item;

     {

Systems Programming

170



Unit 4.  Inter Process Communication 

171



2017 AVU

The African Virtual University 
Headquarters

Cape Office Park 

Ring Road Kilimani

PO Box 25405-00603

Nairobi, Kenya

Tel: +254 20 25283333

contact@avu.org

oer@avu.org 

The African Virtual University Regional 
Office in Dakar

Université Virtuelle Africaine

Bureau Régional de l’Afrique de l’Ouest

Sicap Liberté VI Extension

Villa No.8 VDN

B.P. 50609 Dakar, Sénégal 

Tel: +221 338670324

bureauregional@avu.org


