
Applied Computer Science: CSI 5102

SOFTWARE QUALTY
ASSURANCE
Dr. Godfrey Justo

Foreword

The African Virtual University (AVU) is proud to participate in increasing access to education in

African countries through the production of quality learning materials. We are also proud to

contribute to global knowledge as our Open Educational Resources are mostly accessed from

outside the African continent.

This module was developed as part of a diploma and degree program in Applied Computer

Science, in collaboration with 18 African partner institutions from 16 countries. A total of

156 modules were developed or translated to ensure availability in English, French and

Portuguese. These modules have also been made available as open education resources

(OER) on oer.avu.org.

On behalf of the African Virtual University and our patron, our partner institutions, the African

Development Bank, I invite you to use this module in your institution, for your own education,

to share it as widely as possible and to participate actively in the AVU communities of practice

of your interest. We are committed to be on the frontline of developing and sharing Open

Educational Resources.

The African Virtual University (AVU) is a Pan African Intergovernmental Organization

established by charter with the mandate of significantly increasing access to quality

higher education and training through the innovative use of information communication

technologies. A Charter, establishing the AVU as an Intergovernmental Organization, has

been signed so far by nineteen (19) African Governments - Kenya, Senegal, Mauritania, Mali,

Cote d’Ivoire, Tanzania, Mozambique, Democratic Republic of Congo, Benin, Ghana, Republic

of Guinea, Burkina Faso, Niger, South Sudan, Sudan, The Gambia, Guinea-Bissau, Ethiopia

and Cape Verde.

The following institutions participated in the Applied Computer Science Program: (1)

Université d’Abomey Calavi in Benin; (2) Université de Ougagadougou in Burkina Faso;

(3) Université Lumière de Bujumbura in Burundi; (4) Université de Douala in Cameroon; (5)

Université de Nouakchott in Mauritania; (6) Université Gaston Berger in Senegal; (7) Université

des Sciences, des Techniques et Technologies de Bamako in Mali (8) Ghana Institute of

Management and Public Administration; (9) Kwame Nkrumah University of Science and

Technology in Ghana; (10) Kenyatta University in Kenya; (11) Egerton University in Kenya; (12)

Addis Ababa University in Ethiopia (13) University of Rwanda; (14) University of Dar es Salaam

in Tanzania; (15) Universite Abdou Moumouni de Niamey in Niger; (16) Université Cheikh Anta

Diop in Senegal; (17) Universidade Pedagógica in Mozambique; and (18) The University of the

Gambia in The Gambia.

Bakary Diallo

The Rector

African Virtual University

Software Quality Assurance

22

Production Credits

Author
Dr. Godfrey Justo

Peer Reviewer
Victor Odumuyiwa

AVU - Academic Coordination
Dr. Marilena Cabral

Overall Coordinator Applied Computer Science Program
Prof Tim Mwololo Waema

Module Coordinator
Jules Degila

Instructional Designers
Elizabeth Mbasu

Diana Tuel

Benta Ochola

Media Team
Sidney McGregor Michal Abigael Koyier

Barry Savala Mercy Tabi Ojwang

Edwin Kiprono Josiah Mutsogu

Kelvin Muriithi Kefa Murimi

Victor Oluoch Otieno Gerisson Mulongo

 Production Credits

33

Copyright Notice

This document is published under the conditions of the Creative Commons

http://en.wikipedia.org/wiki/Creative_Commons

Attribution http://creativecommons.org/licenses/by/2.5/

Module Template is copyright African Virtual University licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License. CC-BY, SA

Supported By

AVU Multinational Project II funded by the African Development Bank.

Software Quality Assurance

44

Table of Contents
Foreword 2

Production Credits 3

Copyright Notice 4

Supported By 4

Course Overview 6

Welcome to Software Quality Assurance. . 6

Prerequisites . 6

Materials . 6

Course Goals . 6

Unit 0: Pre-Assessment 7

Unit 1:Overview of Software Quality Assurance 7

Unit 2: Requirements analysis: Requirements elicitation and user-centered

development 7

Unit 3: Verification and validation 7

Unit 4: Quality management 7

Assessment 7

Unit 1 . 9

Unit 2 . 9

Unit 3 . 9

Unit 4 . 10

Unit 1: Overview of Software Quality Assurance 11

Unit Introduction . 11

Unit Objectives . 11

Learning Activities . 12

Quality Assurance, Quality Elements and SQA Tasks and Goals 12

Conclusion . 15

Quality factors and Quality models . 15

Conclusion . 20

 Table of Contents

55

Software Quality Assurance

66

Introduction to Software Reliability 20

Conclusion . 23

 Unit Assessment . 24

Unit 2: Requirements Analysis, Elicitation and User-Centered
Development 25

Unit Introduction . 25

Unit Objectives . 26

Learning Activities . 27

Requirements Elicitation and User-Centered Development 27

Conclusion . 29

 Assessment . 29

Elicitation, Analysis and Negotiation . 30

Conclusion . 34

Problem Frames Approach . 35

Conclusion . 38

Unit 3. Verification and Validation 40

Unit Introduction . 40

Unit Objectives . 41

Learning Activities . 41

Defining the Testing Mission 41

Conclusion . 45

Testing Strategies . 45

Generic Test Strategies 46

Conformance Testing 46

Conclusion . 47

Validating Preliminary Designs Through Prototyping 47

Scoping a Prototype 48

The Prototyping Spectrum . 51

Conclusion . 54

 Table of Contents

55

Unit Assessment .
55

Unit 4. Quality Management 57

Unit Introduction . 57

Learning Activities . 59

Quality Assurance and Standards 59

Documentation standards 60

Conclusion . 61

Documentation standards 61

Conclusion . 65

 Unit Assessment . 66

 Course Assessment . 66

Course References . 67

Software Quality Assurance

66

Course Overview
Welcome to Software Quality Assurance.
This course presents software quality assurance. Software quality assurance (SQA) is the

concern of every software engineer to reduce costs and improve product time-to-market. A

Software Quality Assurance Plan is not merely another name for a test plan, though test plans

are included in an SQA plan. SQA activities are performed on every software project. Use of

metrics is an important part of developing a strategy to improve the quality of both software

processes and work products.

Building on preceding exposure on fundamentals of the software process, this course focuses

on techniques for ensuring software quality. Here, quality assurance is viewed as an activity

that runs through the entire development process: understanding the needs of clients and

users; analyzing and documenting requirements; verifying and validating solutions through

testing.

Prerequisites
Software Engineering

Object-Oriented Analysis and Design

Principles of programming

Materials
The materials required to complete this course are:

Computers with internet access

Course Goals
Upon completion of this course the learner should be able to

to understand the nature of software defects and the different approaches that lead to the

development of quality software

to equip learners with the knowledge as well as skills necessary for producing quality software

to experience the advantages and challenges of using Software Quality Assurance

standardsUnits

 Course Overview

77

Unit 0: Pre-Assessment

This unit introduces the course and provide a roadmap on the organization of course

materials.

Unit 1:Overview of Software Quality Assurance

This unit presents the notion of Software quality assurance as the activity applied throughout

the software process, on aspects of;

whether the software adequately meet its quality factors, the software development been

conducted according to pre-established standards and the technical disciplines performed

their SQA roles properly. The unit thus highlights the quality assurance elements, the SQA

tasks, the SQA goals and the SQA plan, amongst others.

Unit 2: Requirements analysis: Requirements elicitation and user-centered
development

This unit presents the requirements process with emphasis to communicating with

stakeholders as a philosophy of user-centered development. The unit highlights the process

of requirements elicitation and analysis to derive system specification and models. It also

discusses the requirements analysis through problem frames.

Unit 3: Verification and validation

This unit explain the verification and validation concepts, and presents the creation

process of a test mission with a highlight of the commonly applied test strategies. Further it

describes the concept of conformance testing and provide detailed insights on prototyping

as a methodology with inherent mechanism for validation of software designs.

Unit 4: Quality management

This unit highlights the intertwine between the development process quality and product

quality and advocates the creation of process standards, Monitoring of the development

process and reporting the software as important mechanism of process quality management.

The unit further discusses the important functions of quality management including quality

planning, quality control and software measurement and metrics.

Assessment

Formative assessments, used to check learner progress, are included in each unit.

Summative assessments, such as final tests and assignments, are provided at the end of each

module and cover knowledge and skills from the entire module.

Summative assessments are administered at the discretion of the institution offering the

course. The suggested assessment plan is as follows:

Software Quality Assurance

88

1 Unit 1: Unit Assessments 50 Points

Unit 2: Unit Assessments

2 Unit 3: Unit Assessments 30 Points

3 Unit 4: Unit Assessments 20 Points

Schedule

Unit Activities Estimated time

Unit 0 & Unit 1 Independent

study, Tutorials,

Assignments

 20 Hours

Unit 2 Independent

study, Tutorials,

Assignments

45 Hours

Unit 3 Independent

study, Tutorials,

Assignments

35 Hours

Unit 4 Independent

study, Tutorials,

Assignments

20 Hours

Readings and Other Resources
The readings and other resources in this course are:

Unit 0

Required readings and other resources:

Gerard O’Regan, Introduction to Software Quality, Springer, 2014

Optional readings and other resources:

Jeff Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement IEEE Computer Society, 2005

 Course Overview

99

Unit 1
Required readings and other resources:

Gerard O’Regan, Introduction to Software Quality, Springer, 2014

Optional readings and other resources:

Darrel Ince, An Introduction to Software Quality Assurance and Its Implementation,

McGraw-Hill, 1994

Jeff Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement , IEEE Computer Society, 2005

Unit 2
Required readings and other resources:

Gerard O’Regan, Introduction to Software Quality, Springer, 2014

https://en.wikipedia.org/wiki/Problem_frames_approach[Accessed 23/02/2016]

Optional readings and other resources:

Alistair Sutcliffe, User-Centred Requirements Engineering, Springer-Verlag London Limited

2002

https://en.wikipedia.org/wiki/Requirements_analysis [Accessed 23/02/2016]

David J. Gilmore, Russel L. Winder and Francoise Detienne, User-Centred Requirements for

Software Engineering Environments, Springer-Verlag Berlin Heidelberg GmbH, 1994

Unit 3
Required readings and other resources:

Gerard O’Regan, Introduction to Software Quality, Springer, 2014

http://www.rbcs-us.com/documents/Defining-Testing-Article.pdf [accessed 24/02/2016]

http://www.sqa.org.uk/e-learning/SDPL03CD/page_16.htm[accessed 24/02/206]

http://searchsoftwarequality.techtarget.com/definition/conformance-testing [accessed

24/02/2016]

Optional readings and other resources:

Paul Ammann and Jeff Offutt, Introduction to Software Testing, Cambridge University Press,

2008

Software Quality Assurance

1010

William E. Perry, Effective Methods for Software Testing, Third Edition, Wiley Publishing,

Inc., Indianapolis, Indiana, 2006

http://www.softwaretestinghelp.com/what-is-conformance-testing/[accessed 24/02/2016]

Unit 4
Required readings and other resources:

Gerard O’Regan, Introduction to Software Quality, Springer, 2014

https://www.smashingmagazine.com/2010/06/design-better-faster-with-rapid-prototyping/

[accessed 24/02/2016]

Optional readings and other resources:

Jeff Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement IEEE Computer Society, 2005

Darrel Ince, An Introduction to Software Quality Assurance and Its Implementation,

McGraw-Hill, 1994

Unit 0. Pre-Assessment

Unit Introduction

The purpose of this unit is to determine your grasp of knowledge related to this course .

Unit Objectives

Unit Readings and Other Resources

The readings in this unit are to be found at the course-level section “Readings and Other

Resources”.

 Unit 1. Overview of Software Quality Assurance

1111

Unit 1: Overview of Software
Quality Assurance
Unit Introduction
The mission of a software company is to develop high-quality innovative products and

services at a competitive price to its customers, and to do so ahead of its competitors.

This requires a clear vision of the business, a culture of innovation, an emphasis on quality,

detailed knowledge of the business domain, and a sound product development strategy.

It also requires a focus on customer satisfaction and software quality to ensure that the

desired quality is built into the software product, and that customers remain loyal to the

company. Customers today have very high expectations on quality, and expect high-quality

software products to be consistently delivered on time. The focus on quality requires that the

organization define a sound software development infrastructure to enable quality software to

be consistently produced.

Unit Objectives
Upon completion of this unit you should be able to:

Describe the quality assurance elements, SQA tasks, and SQA goals

Understand the quality factors and quality models as basis for quality measurements

Underscore the role of software reliability

 KEY TERMS
SQA: Software quality assurance

Project manager: In charge for management of
project activities

System Engineer: Expert in system development
activities

SQA team: Group of individuals tasked with the SQA
tasks

Software Quality Assurance

1212

Learning Activities

Quality Assurance, Quality Elements and SQA Tasks and Goals

Introduction

Quality can not be added to a piece of software after you have built it, it must be built into

the software from the beginning. Software Quality Assurance is an umbrella activity applied

throughout the software process which encompasses; planned and systematic pattern of

actions required to ensure high quality in software and responsibility of many stakeholders

(software engineers, project managers, customers, salespeople, SQA team).

Quality is a universal concern in software engineering. —Achieving quality encompasses

ensuring quality in software engineering processes, methods, and tools; which turn out to be

one of the key aims of project management.

Quality products can assure increase market shares, provide long term profitability for

companies; while poor quality can certainly have the opposite effect. —Yet, in spite of the

focus on quality it can be remarkably elusive to attain in actual software engineering projects.

Activity Details

A reason for the concern with quality is the sheer complexity of many modern software

systems.

For example, there is approximately 10 Mbytes of object code in an A320 airbus flight control

system. —Complexity in software systems arises in a number of ways: The large number of

modules, concurrent processes, and diversity of platforms that must interact to achieve the

aims and requirements of the system; and the development of the product itself which is

subject to changes in requirements, changes in personal and the ever present constantly

changing technology used in implementing and engineering products.

From an end-user’s perspective software quality is judged based their interaction with it. For

users a system has quality if it is fit for purpose, reliable and has reasonable performance, easy

to learn and use. Sometime, if the functionality is hard to learn but is extremely important,

then users will still judge the system to have high quality. —The Developer’s Perspective,

software quality is typically perceived by the number of faults; ease of changing the system,

ease of testing the system, the nature of the design, conformance to requirements, resource

usage and performance. The maintainer’s perspective is similar to developer’s perspective;

but also includes the simplicity and modularity of the system, the documentation produced

by the developers; and the ease of understanding the implementation.

Software engineers need to choose processes, tools and techniques to monitor and control

the quality of the software as it is being developed. —If we can not directly monitor the

attributes, we often need to monitor the quality of the processes, under the assumption that

the quality of the process influences the quality of the product.

 Unit 1. Overview of Software Quality Assurance

1313

The key SQA questions that any software engineers need to constantly ask are:

Does the software adequately meet its quality factors?

Has software development been conducted according to pre-established standards?

Have technical disciplines performed their SQA roles properly?

The key quality assurance elements that system engineers need to monitor are summarised in

Table 1.

Table 1: Quality Elements

Element Description

Standards Ensure that standards are adopted and

followed

Reviews and

audits

Audits are reviews performed by SQA

personnel to ensure that quality guidelines

are followed for all software engineering

work

Testing Ensure that testing is properly planned and

conducted

Error/defect

collection and

analysis

Collects and analyses error and defect

data to better understand how errors are

introduced and can be eliminated

Changes

management

Ensures that adequate change

management practices have been

instituted

Education Takes lead in software process

improvement and educational program

Vendor

management

Suggests specific quality practices vendor

should follow and incorporates quality

mandates in vendor contracts

Security

management

Ensures use of appropriate process and

technology to achieve desired security

level

Safety Responsible for assessing impact of

software failure and initiating steps to

reduce risk

Software Quality Assurance

1414

Risk

management

Ensures risk management activities are

properly conducted and that contingency

plans have been established

Software quality assurance (SQA) encompasses a quality management approach, an effective

software engineering technology (methods and tools), a formal technical reviews that are

applied throughout the software process, a multi-tiered testing strategy, a control of software

documentation and the changes made to it, a procedure to ensure compliance with software

development standards (when applicable), a measurement and reporting mechanisms.

Typically in an project the project manager need to a set up an SQA team whose tasks

include:

• Prepare SQA plan for the project.

• Participate in the development of the project’s software process description.

• Review software engineering activities to verify compliance with the defined
software process.

• Audit designated software work products to verify compliance with those defined
as part of the software process.

• Ensure that any deviations in software or work products are documented and
handled according to a documented procedure.

• Record any evidence of noncompliance and reports them to management.

The SQA team would operate under the guide of the SQA goals as listed in table 2.

Table 2: SQA Goals

Requirements

Quality

Design Quality Code Quality Quality Control

Effectiveness

Ambiguity Architectural

integrity

Complexity Resource

allocation

Completeness Component

completeness

Maintainability Completion rate

Volatility Interface

complexity

Understandability Review

effectiveness

Traceability Patterns Reusability Testing

effectiveness

Model clarity Documentation

 Unit 1. Overview of Software Quality Assurance

1515

Conclusion
This activity described the quality assurance concepts and how the development team and

stakeholders work together to assure product quality. The SQA elements, tasks and goal were

also identified.

Assessment
i. Explain the concept of software quality with respect to different stakeholders

ii. Identify the role of the different stakeholders in ensuring software quality

iii. Describe the SQA team with respect to the tasks and guiding goals.

Quality factors and Quality models
Introduction

Software quality refers to conformance to explicitly stated requirements and standards. —

Quality assurance is the activity that leads to “fitness of purpose”. —Quality product is the

one that does what the customer expects it to do.

User satisfaction = compliant product + good quality + delivery within budget and schedule.

Quality control is a series of inspections, reviews, and tests to ensure a product meets the

requirements placed upon it, including a feedback loop to the process that created the work

product. Quality control activities may be fully automated, entirely manual, or a combination

of automated tools and human interaction. Quality assurance refers to the analysis, auditing

and reporting activities. It provide management with the data necessary to be informed

about product quality

Activity Details

Total Quality Management (TQM) is a popular approach for management practice.

TQM stresses continuous process improvement and can be applied to software development.

TQM is a holistic business management methodology that aligns the activities of all

employees in an organization with the common focus of customer satisfaction through

continuous improvement of all activities, goods and services Not much can be done to

improve quality until a visible, repeatable, and measurable process is created. The Quality

Movement refers to a system of continuous process improvement, revolving around four main

steps: develop a process that is visible, repeatable, and measurable.

examines intangibles that affect the process and works to optimize their impact on the

process.

Software Quality Assurance

1616

Concentrates on the user of the product in which examine the way the user applies the

product. This step leads to improvement in the product itself and, potentially, to the process

that created it.

A business-oriented step that looks for opportunity in related areas identified by observing

the use of the product in the marketplace.

The SQA team must look at software from the customer’s perspective, as well as assessing

its technical merits. —The activities performed by the SQA team involve quality planning,

oversight, record keeping, analysis and reporting, as depicted in Figure 1.

Figure 1: SQA Team Activities

At the beginning of the project, project manager will consider quality factors and decide

which ones are important for the system. The fundamental quality factors entail the

Functionality, Usability, Reliability, Performance, and Supportability requirements of the

software as described by Table 3. Subsequently, the project manager will decide on what

validation and verification activities will be carried out to check that the required quality

factors are present in the product. —During the project validation and verification of quality

standards and procedures are conducted and at the end of the project the expected quality

achieved and to what extent can be determined.

Table 3: Fundamental Quality Factor

Factor Description

Functionality Refers to feature set, capabilities, generality of

functions, and security

Usability Refers to human factors like consistency, and

documentation

 Unit 1. Overview of Software Quality Assurance

1717

Reliability Frequency and severity of failures, accuracy of

outputs, mean time between failures, ability to

recover, predictability

Performance Processing speed, response time, resource

consumption, throughput, and efficiency

Supportability Extensibility, adaptability, maintainability,

testability, compatibility, configurability

Quality can not be measured or assessed directly, except perhaps by having someone inspect

artifacts like designs and software modules for quality. It relies heavily on an individual’s

understanding and interpretation of quality. can make use of ‘quality models’ that

decomposes the concept of quality Into number of attributes; each of which can be measured

more objectively.

Under quality models, for a system to have quality, we usually require that it:

Satisfy explicit functional and non-functional requirements, that is, be correct, complete and

consistent with respect to the requirements.

Adhere to internal (organizational or project) and external standards imposed on the project.

For example, IEC 61508 (safety), Rainbow standard (US security), IEEE standards, and internal

company standards.

Conform to implicit quality requirements; which are requirements for performance, reliability,

usability, safety, security (Typically, what we think of as the attributes of quality)

Table 4 and Table 5 presents McCall’s quality model and ISO-9126 Quality Models

respectively.

Table 4: McCall’s quality model and its interpretation of external system attributes

Quality Attribute Description according to McCall et.al

Correctness The extent to which a program satisfies it

specifications and fulfils the user’s mission

objectives

Reliability The extent to which a program can be

expected to perform its intended function

with required precision

Efficiency The amount of computing resources and

code required by a program to perform a

given function

Software Quality Assurance

1818

Integrity The extent to which access to software

or data by unauthorised persons can be

controlled

Usability The effort required to learn, operate,

prepare input, and interpret output of a

program

Maintainability The effort required to locate and fix an error

in an operational program

Testability The effort required to test a program

to ensure that it performs its intended

function

Flexibility The effort required to modify an

operational program

Portability The effort required to transfer a

program from hardware and/or

software environment to another

Reusability The extent to which a program (or

parts thereof) can be reused in other

applications.

Interoperability The effort required to couple one

system with another

Table 5: ISO-9126 Quality Models

Characteristics Sub-Characteristics

Functionality Suitability

Interoperability

Security

Reliability Maturity

Fault Tolerance

Recoverability

 Unit 1. Overview of Software Quality Assurance

1919

Usability Understandability

Operability

Learnability

Attractiveness

Efficiency Time Behaviour

Resource Utilization

Maintainability Analysability

Changeability

Stability

Testability

Portability Adaptability

Installability

Co-existance

Replaceability

Assessing attributes in quality standards using McCall’s or ISO9126 is not so easy in practice:

As some interpretation of whether or not an attribute meets its targets is still required.

In some cases, such as usability, it is difficult to even specify the targets.

It is always necessary to consider the attributes of quality for any system. Software quality

assurance methods can be chosen to assure that you are building the right quality targets into

your system.

The notion of quality is now being comprehended, but the assurance counterpart can be just

as difficult. It is difficult, if not impossible, to guarantee absolutely that all of the requirements,

including the quality requirements are satisfied. We aim to provide a high level of assurance,

that program will meet the needs for which it was written.

The problem is that programs and systems can be highly complex. A typical program

of moderate size (30K lines of code) can exhibit an exponentially large number of

interconnections, large numbers of paths etc. For the level of assurance expected to be

achieved in projects, in practice we need to:

1. understand the quality attributes that we are interested in for our project

2. have methods to build these attributes into our systems

Software Quality Assurance

2020

Conclusion
In this activity the concept of quality was further describe along with the related notions of

total quality management and quality movement. This also lead to a description of quality

factor and quality model which provide the basis for quality control.

Introduction to Software Reliability

Introduction

Software testing aimed at finding the faults in programs. —Software is part of a much larger

system consisting of hardware and communications infrastructure as well as programs. —One

is required to build a system that is far more reliable than any one of its component. —For

example:

How reliable /available must a web server be to handle the number of transactions the site

receives?

In process control industries, such as food and beverage industry or chemical plants

automation is playing a larger role thus robots and computer systems need to be operating

for long length of time without maintenance.

Activity Details

Software Reliability can be used in number of ways:

Evaluation of new system: To evaluate systems by testing the system and gathering reliability

measures. The measures can be useful in deciding what third party software, such as libraries,

to use in a project.

Evaluation of development status: Comparing current failure rates with desired failure rates.

Large discrepancies may indicate the need for action.

Monitor the operational profile: The effect of changes or new features as they are added to

the system.

Reliability is one of a number of dependability attributes of a program. —Dependability is a

measure of a system’s availability, reliability, and its maintenance support. —Dependability is

analyzed in terms of attributes of dependability. Unlike quality attributes, dependability is a

collective name for a set of attributes as shown in Figure 5.

 Unit 1. Overview of Software Quality Assurance

2121

Figure 5: Attributes of Dependability

Reliability is a means for achieving dependability, just as for example, fault tolerance is the

means for improving reliability, as seen in Figure 5. Reliability is the probability that a system

will operate without failure for a specified time in a specified environment. —Consider two

simple systems consisting of two writers and a communicating via a shared memory on a bus,

as shown in Figure 6:

Suppose probability of failure of each channel of the bus is 10-5 per operational hour.

Figure 6: A reader and two writers communicating through a shared
memory on single channel bus.

For a single channel bus the probability of a bus failure, such as message becoming corrupt

or the bus failing to transmit a message is ‘one failure every 11.4 years’. If we add the second

channel then the failure probability decreases to one failure every 1,114,552 years, because

both channels must fail at the same time for this to occur. —We have to be careful in not over

interpreting these numbers: While improvement is significant, after all, it is only a probability.

The definition of reliability depends heavily on determining, and in practice detecting, failures.

Examples of failures include:

• Functional failures – where the actual behavior of the system deviates from the
specified functional behavior.

Software Quality Assurance

2222

• Timing failures – where the program may deliver correct results but the program
fails to meet its timing requirements.

• Safety failures – where an accident resulting in harm or injury is deemed to be a
failure of the system.

• In practice, we need a way of observing failures and logging each failure as it
arises. —We also need a way of determining the time at which a failure occurs

– called failure time; Or the rate at which failure occur – called failure rate (with
assurance that the estimates are accurate!).

Failures can be classified into:

• Transient Failure - Program gives incorrect result, but the program continues to
execute.

• Hard Failure - Program crashes (stack overrun….)

• Cascaded Failure - Program crashes and takes down other programs

• Catastrophic Failure - Program crashes and takes down the operating system or
the entire system;

A total system failure.

Software reliability enginering (SRE) encomapesses activities for improving the reliability

attribute a a software. —Activities of SRE span the entire software development process as

shown by Table 4, but the activities themselves do not constitute a development process. The

activities themselves need to be supported by:

• Analytical tools – reliability models

• Evaluation methods – Markov Chains.

Table 4: SRE Activities

Phase SRE Activities

Requirements Determine the functional

profile of the system

Determine and classify

important failures

Identify client reliability

needs

Conduct trade-off studies.

Set reliability objectives.

 Unit 1. Overview of Software Quality Assurance

2323

Design Design and evaluate systems

to meet reliability goals.

Allocate reliability targets to

components

Implementation Measure and monitor

the reliability during

implementation.

Manage fault introduction

and propagation.

System and Field

Testing

Measure reliability growth

(using reliability growth

models).

Track testing progress against

reliability growth.

Post-delivery &

Maintenance

Monitor field reliability

against reliability objectives

Conclusion
This activity presented the reliability quality factor and its relation to software failure. Also

the activity highlighted how software engineers can improve reliability by incorporating SRE

activities within the software development process.

 Assessment

1. Is reliability the most critical quality factor? Discuss.

2. Discuss the key skills and tools that might be needed to perform SRE
activities.

 UNIT SUMMARY

This unit provided a thorough overview of software quality assurance (SQA). Concepts

pertaining to quality assurance were defined including quality Assurance and SQA elements,

tasks and Goals respectively.

Software Quality Assurance

2424

 In turn the quality factors and quality models were presented which provides a head start

for quality measurement. Finally, the reliability quality factor was discussed and methods for

improving software reliability outlined. The focus on quality requires that the organization

define a sound software development infrastructure to enable quality software to be

consistently produced.

 Unit Assessment
Check your understanding!

Miscellaneous questions

 Instructions

1. Discuss the implication of quality to products in general

2. Describe techniques/methods/tools which could be used by Software
engineers to help answer the SQA questions:

3. Does the software adequately meet its quality factors?

4. Has sof tware development been conduc ted according to
prestablished standards?

5. Have technical disciplines performed their SQA roles properly?

6. Explain one example of software and its application domain where
reliability is:

i. very important

ii. not very important

Grading Scheme

As per the offering University

Answers

mailto:njulumi@gmail.com

Unit Readings and Other Resources

The readings in this unit are to be found at course level readings and other resources.

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

2525

Unit 2: Requirements Analysis,
Elicitation and User-Centered
Development
Unit Introduction
Requirements analysis encompasses tasks for determining the needs or conditions to meet for

a new or altered product or project, taking account of the possibly conflicting requirements

of the various stakeholders, analyzing, documenting, validating and managing software or

system requirements. Requirements analysis is critical to the failure of a systems or software

project. The requirements should be documented, actionable, measurable, testable,

traceable, related to identified business needs or opportunities, and defined to a level of

detail sufficient for system design.

Requirements analysis generally includes three types of activities:

Eliciting requirements (also requirements gathering) which entails, for example, inspecting

existing business process documentation and stakeholder interviews.

Analyzing requirements which entails determining whether the stated requirements are clear,

complete, consistent and unambiguous, and resolving any apparent conflicts.

Recording requirement which entails documenting requirements in various forms, usually

including a summary list and may include natural-language documents, use cases, user stories,

or process specifications.

For a successful requirement analysis it is important to identify all the stakeholders, take

into account all their needs and ensure they understand the implications of the new systems.

Software engineers can employ several techniques to elicit the requirements from the

customer. These may include the development of scenarios (represented as user stories in

agile methods), the identification of use cases, the use of workplace observation, holding

interviews, or focus groups (formally through requirements workshops, or requirements review

sessions) and creating requirements lists.

Prototyping can also be used to develop an example system that can be demonstrated to

stakeholders. Whenever needed, the Software engineers can also employ a combination of

these methods to establish the exact requirements of the stakeholders, so that a system that

meets the business needs is produced.

Requirements quality can be improved by additionally employing the following and other

related methods:

Visualization - employ tools that promote better understanding of the desired end-product

such as visualization and simulation.

Consistent use of templates - develop a set of models and templates to document the

requirements and apply them consistently.

Software Quality Assurance

2626

Documenting dependencies - document dependencies and interrelationships among

requirements, as well as any assumptions and congregations.

Unit Objectives
Upon completion of this unit you should be able to:

• develop skills for requirement elicitation with user focus

• develop knowledge on the requirements analysis core activities of elicitation,
analysis and negotiation

• describe a new analysis method of problem frames approach

 KEY TERMS
1. Requirement elicitation: An activity of user requirement

gathering

2. User centered development: A development process driven
by involvement of stakeholders

3. Requirement Analysis: An activity that determine requirement
necessity, consistency, completeness and feasibility with the
business goals

4. Requirements negotiation: An activity for determining
requirement problems, priority and change from stakeholders
perspective.

5. Problem statement: An initial developed by client which
give concise description of the requirements that should be
addressed by the prospective System.

6. Problem frames approach: Also called Problem analysis is an
approach to software requirements analysis, which encompasses
a set of concepts to be used when gathering requirements and
creating associated software specifications.

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

2727

Learning Activities

Requirements Elicitation and User-Centered Development

Introduction

Requirement elicitation encompasses all activities involved in discovering the requirements

of a system. System developers and engineers work in close relationship with customer and

end-users (stakeholders) to find out more about the problem to be solved, to describe the

functionality of the system, performance of the system, hardware constraints and so on.

Activity Details

Requirement elicitation is not just a simple process of gathering for requirements, but a highly

complex process due to following inevitable field environments:

Customer rarely have a clear picture of their requirements

Different people have conflicting requirements

Business environment in which the elicitation process takes place is constantly changing,

hence may trigger some requirements to change or new requirements resulting from new

stakeholders.

Many different elicitation processes does exist which a requirements elicitor has to choose

from.

Requirements elicitation is the earliest activity of the software development process and

it is an integro process within as depicted in Figure 1. Also note that each successor

development phase activity systematically transforms the requirement elicitation outcome of

the successor development phase.

Figure 1: Requirement Elicitation in a Software Development
Process

Software Quality Assurance

2828

The requirement elicitation process revolves around four basic activities perspectives shown

Figure 2; the application domain, problem, business and stakeholder perspective. The

application domain perspective entails an understanding of knowledge of the general area

where the system is applied. The problem perspective entail an understanding of details of

the specific customer problem where the system will be applied. The business perspective

entail understanding the how systems interact and contribute to overall business goals.

The stakeholders perspective entails understanding the needs and constraints of system

stakeholders, that is, aim to come up with detailed specific needs of people who require

system support in their work.

Figure 2: Requirement Elicitation Activities

Viewed from the process perspective, requirements elicitation encompasses four basic

elicitation stages as shown in Figure 3 which includes: objective setting, background

knowledge acquisition, knowledge organization and stakeholder requirement collection. In

the objective setting the concern is to establish the overall organizational objectives, and

answer why is the system necessary. The background knowledge acquisition concern with

gathering and understanding more background information about the system. Knowledge

organization stage involves with organizing, prioritizing and structuring the large amount of

data collected in the preceding stages. The stakeholder requirements collection stage aims to

involve system stakeholders to discover their requirements.

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

2929

Figure 3: Requirement Elicitation Stages

Conclusion
In this activity we describe the requirement elicitation as an integral part of the software

development process. We highlighted its complexity owing to inevitable occurring incidences

in the field, it logical underlying activities and the stages involved when requirement

elicitation is viewed as a process.

 Assessment
Using knowledge acquired from Software engineering course choose a simple example

of software application use case model and systematically develop the associated

transformations into:

1. Application domain objects

2. Subsystems

3. Solution domain objects

4. Source code skeleton

5. Test cases

Software Quality Assurance

3030

Elicitation, Analysis and Negotiation
Introduction

The requirement elicitation and analysis activities are fundamentally intertwined and in some

literatures the span of the two activities is considered as analysis phase. In this activity we

describe in detail the tasks involved to capture their relationships.

Activity Details

Requirement elicitation and analysis activities are typically intertwined as represented by a

spiral in Figure 4, showing yet another view in requirements elicitation.

Figure 4: A Requirements Solicitation Spiral

As part of requirements elicitation process Software engineers typically are engaged in

checking for the following:

Requirement Analysis sector checks:

Necessity - whether each requirement contribute to the business goals of the organization or

to the specific problem to be addressed by the system.

Consistency and completeness - whether requirements are consistency and complete (i.e, no

contradictions, no services or constraints are missed out)

Feasibility - the context of the budget and schedule.

Requirement negotiation sector engage with stakeholders for:

Requirements discussion in which requirements highlighted as problematical are discussed

and the stakeholders involved present their views about the requirements.

Requirements prioritization in which critical requirements are identified

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

3131

Requirements agreement in which a compromised set of requirements are agreed and any

proposed necessary changes to requirements are affected

Being an integral part of requirement solicitation the the requirement analysis and

requirement negotiation activities can be further be described as processes shown in Figure 5.

Note how the deliverables from the requirement analysis process feeds into the requirement

negotiation process, and the interactions of activities with each process.

Figure 5: Requirement Analysis and Negotiation Process

The requirement elicitation sector and the requirement analysis sector shown in the spiral

also interacts. Figure 6 presents the requirement elicitation and analysis process in which the

respective deliverables shown, namely, the requirements specification and analysis model.

Figure 6: Requirement Elicitation and Analysis Process

Software Quality Assurance

3232

The Analysis Model and Requirements Specification have fundamental difference along with

some commonality. Both models focus on the requirements from the user’s view of the system.

However, the requirements specification uses natural language (derived from the problem

statement), while the analysis model uses formal (Z, pi-calculus) or semi-formal notation (for

example, a graphical language like UML). Note that the formal notations encompass an exact

mathematical syntax and semantic.

The starting point for both is the problem statement. The problem statement is usually

developed by the client as a concise description of the requirements that should be

addressed by the System. The typical elements of the problem statement document includes:

Description of the problem that should be solved along with the current situation - It

describes “what” is needed, not “how” it should be reached

Description of one or more scenarios

Brief description of initial requirements (Functional and non-functional requirements)– typically

with no complete description.

Description of project schedule (Major milestones that involve interaction with the client

including deadline for delivery of the system)

Description of target environment (The environment in which the delivered system has to

perform a specified set of system tests)

Description of client Acceptance Criteria (Criteria for the system tests)

The description of the current Situation (Problem To Be Solved) may be stated to indicate for

example:

The problem in the current situation - such as the response time in a travel booking system is

far too slow or there have been illegal attacks to the system.

A change either in the application domain or in the solution domain has appeared, for

example:

Change in the application domain - A new function (business process) is introduced into the

business (e.g. A function is provided for credit payment with fingerprint as authorization)

Change in the solution domain - A new solution (technology enabler) has appeared (e.g. New

standards / implementation for secure network communication)

Figure 7 shows an example of a problem statement in the Library System domain.

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

3333

Figure 7: Problem Statement Example

The process of Requirements Elicitation will typically involve identifying and developing some

of the following listed artifacts:

• Actors - Types of users, roles, external systems, etc.

• Scenarios - Interactions between users and the systems (one possible case)

• Use Cases - Abstractions of Scenarios (Many possible cases)

• Refining Use Cases - Refinements, adding exceptions, etc.

Relationships among Use Cases

Non-Functional Requirements (Security issues, Performance, etc.)

To achieve the above tasks one need to apply specific techniques which may be used to

collect knowledge about system requirements. The information gathering techniques include:

Solicit sources of information - Documents about the application domain including manuals

and technical documents of legacy systems.

Cultivating user participation through:

Interviews (Closed Interviews where users answer a predefined set of questions, or open

Interviews where there is no predefined agenda)

User Observation

The collected knowledge must be structured via:

• Partitioning - aggregating related knowledge

Software Quality Assurance

3434

• Abstraction - recognizing generalities

• Projection – organizing knowledge from several perspectives

Figure 8 depicts a requirements elicitation cycle. Note that requirements elicitation is

cooperative process involving requirements engineers and system stakeholders. Also while in

the field problems may arise including:

Not enough time for elicitation

Inadequate preparation by engineers

Stakeholders seem not convinced of the need for a new system

Figure 8: Requirements Elicitation Cycle

Conclusion
This activity presented the requirements elicitation analysis and negotiation process. It

highlighted the natural instinct of these activities intertwinement. It discussed the process

of developing a problem statement, which feeds into requirement elicitation, requirement

analysis and negotiation activities. Also the steps and methods of requirements elicitation

were highlighted.

 Assessment
1. Using an application domain of your choice create a problem statement

document.

2. In the problem statement you have created develop an initial set of
requirements outline

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

3535

Problem Frames Approach
Introduction

Problem analysis or the problem frames approach is an approach to software requirements

analysis. It encompasses a set of concepts to be used when gathering requirements and

creating associated software specifications. It differs from other software requirements

methods owing to its philosophy that:

1. Requirements analysis is approached through a process of parallel (not the
traditional hierarchical) decomposition of user requirements.

2. Perceives user requirements from corresponding relationship in the real
world (the application domain) not from the software system or even the
interface with the software system.

3. The problem frames approach uses sets of conceptual tools. Concepts used
for describing specific problems including: phenomena (of various kinds,
including events), problem context, problem domain, solution domain (i.e.
the machine), shared phenomena (which exist in domain interfaces), domain
requirements (which exist in the problem domains) and specifications (which
exist at the problem domain:machine interface).

4. The graphical tools for describing problems are the context diagram and
the problem diagram.

Activity Details

The problem frame approach provides tools for describing problems. The problem context

is described as follows. Consider a software application to be a kind of software machine. A

software development project aims to change the problem context by creating a software

machine and adding it to the problem context, where it will bring about certain desired

effects.

The particular portion of the problem context that is of interest in connection with a particular

problem (the particular portion of the problem context that forms the context of the problem)

is called the application domain.

After the software development project has been finished, and the software machine has

been inserted into the problem context, the problem context will contain both the application

domain and the machine. At that point, the situation will look like in Figure 9.

Software Quality Assurance

3636

Figure 9: Modeling Problem Context

The problem context contains the machine and the application domain. The machine

interface is where the Machine and the application domain meet and interact. The same

situation can be shown in a different kind of diagram, called a context diagram, as in Figure

10.

Figure 10: Modeling Problem context as Context Diagram

The context diagram provide a tool for understanding the context in which the problem is set.

A domain is a part of the world that we are interested in. It consists of phenomena (individuals,

events, states of affairs, relationships, and behaviors). A domain interface is an area where

domains connect and communicate. Domain interfaces are not data flows or messages. An

interface is a place where domains partially overlap, so that the phenomena in the interface

are shared phenomena (they exist in both of the overlapping domains). In Figure 11, X is the

interface between domains A and B. Individuals that exist or events that occur in X, exist or

occur in both A and B.

Figure 11: Describing and Interface

Shared individuals, states and events may look differently to the domains that share them.

Consider for example an interface between a computer and a keyboard. When the keyboard

domain sees an event Keyboard operator presses the spacebar the computer will see the

same event as Byte hex(“20”) appears in the input buffer.

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

3737

Problem diagrams provide a tool for describing a problem. Figure 12 shows a
generic problem diagram.

Figure 12: A Problem Diagram

In addition to the aspects shown on a context diagram, a problem diagram also shows:

a dotted oval representing the requirement to bring about certain effects in the problem

domains.

dotted lines representing requirement references — references in the requirement to

phenomena in the problem domains.

An interface that connects a problem domain to the machine is called a specification interface

and the phenomena in the specification interface are called specification phenomena. The

goal of the requirements engineer is to develop a specification for the behavior that the

Machine must exhibit at the Machine interface in order to satisfy the requirement.

Figure 13 shows an example of a problem diagram which model a hospital system described

as follow:.

Figure 13: A hospital System Problem Diagram

Consider the following part of a computer system in a hospital. In the hospital, patients are

connected to sensors that can detect and measure their temperature and blood pressure. The

requirement is to construct a Machine that can display information about patient conditions

on a panel in the nurses station.

Software Quality Assurance

3838

The name of the requirement is “Display ~ Patient Condition”. The tilde (~) indicates that the

requirement is about a relationship or correspondence between the panel display and patient

conditions.

The arrowhead indicates that the requirement reference connected to the Panel Display

domain is also a requirement constraint. That means that the requirement contains some kind

of stipulation that the Panel display must meet. In short, the requirement is that The panel

display must display information that matches and accurately reports the condition of the

patients.

The problem frame approach also provides tools for describing classes of problems (problem

frames). A recognized class of problems is called a problem frame (roughly analogous to

a design pattern). In a problem frame, domains are given general names and described in

terms of their important characteristics.

A domain, for example, may be classified as causal (reacts in a deterministic, predictable way

to events) or biddable (can be bid, or asked, to respond to events, but cannot be expected

always to react to events in any predictable, deterministic way). (A biddable domain usually

consists of people.)

The graphical tool for representing a problem frame is a frame diagram. A frame diagram

looks generally like a problem diagram except for a few minor differences: domains have

general, rather than specific, names; and rectangles representing domains are annotated to

indicate the type (causal or biddable) of the domain.

Conclusion
This activity introduced a problem frames approach to software requirements analysis. It

encompasses a set of concepts to be used when gathering requirements and creating

associated software specifications. The activity highlight two tools provided by the problem

frames approach: tools for describing problems and tools for describing classes of problems

 Assessment

1. Compare and contrast the analysis tools proposed in the conventional
requirement analysis with those in the problem frames approach.

2. How are the analysis tools in question 1 align with tools used during
subsequent phases of software development?

 Unit 2. Requirements Analysis, Elicitation and User-Centered Development

3939

 UNIT SUMMARY

This unit presented the requirement analysis process looking on aspects of requirements

elicitation. Requirements elicitation, analysis and negotiation activities were described. The

unit also described the recently introduced analysis method (largely still being developed)

namely the problem frames approach.

Unit Assessment

Check your understanding!

Miscellaneous Questions

Instructions

Using an application problem domain of your choice perform requirement analysis:

1. by conventional analysis methods

2. by problem frames approach

3. Discuss any challenges encountered in the process.

Grading Scheme

As per the offering Institution

Feedback/ Answers

mailto:njulumi@gmail.com

Unit Readings and Other Resources

The readings in this unit are to be found at course level readings and other resources.

Software Quality Assurance

4040

Unit 3. Verification and Validation
Unit Introduction
Before delving into strategies of testing we must understand the process of verifying and

validating the software code. Verification and validation refers to checking processes which

ensure that the software conforms to its specification and meets the needs of the customer.

The system should be verified and validated at each stage of the software development

process using documents produced in earlier stages. Verification and validation thus starts

with requirements reviews and continues through design and code reviews to product testing.

Verification and validation are sometimes confused, but they are different activities.

Validation involves checking that the program as implemented meets the expectations of the

customer, that is, whether we building the right product. Verification involves checking that

the program conforms to its specification, that is whether we are building the product right.

Requirements validation techniques, such as prototyping, help in this respect. However, flaws

and deficiencies in the requirements can sometimes be discovered only when the system

implementation is complete.

To satisfy the objectives of the verification and validation process, both static and dynamic

techniques of system checking and analysis should be used. Static techniques are concerned

with the analysis and checking of system representations such as the requirements document,

design diagrams and the program source code. Dynamic techniques or tests involve

exercising an implementation.

Static techniques include program inspections, analysis and formal verification. Some theorists

have suggested these techniques should completely replace dynamic techniques in the

verification and validation process and that testing is not necessary, this is not a useful point of

view and could be ‘considered harmful’. Static techniques can only check the correspondence

between a program and its specification (verification). They cannot demonstrate that the

software is operationally useful.

Although static verification techniques are becoming more widely used, program testing is

still the predominant verification and validation technique. Testing involves exercising the

program using data like the real data processed by the program. The existence of program

defects or inadequacies is inferred from unexpected system outputs. Testing may be carried

out during the implementation phase to verify that the software behaves as intended by its

designer. This later testing phase checks conformance with the requirements and assesses the

reliability of the system.

 Unit 3. Verification and Validation

4141

Unit Objectives
Upon completion of this unit you should be able to:

• prepare an achievable test mission that engages the stakeholders

• Select appropriate testing strategy and apply conformance testing to chosen
product standards

• Use prototyping techniques for validating software designs

 KEY TERMS
1. Validation: checking that the program as implemented meets

the

2. expectations of the customer

3. verification: checking that the program conforms to its
specification

4. Test mission: Defines testing expectations and objectives
from stakeholders perspective.

5. Test strategy: Defines a general approach to the testing
process

6. Compliance testing: a methodology used to ensure that
a product, process, computer program or system meets a
defined set of standards.

7. Prototyping: A methodology for representing a design
visually

Learning Activities

Defining the Testing Mission

Introduction

The test process is defined to include all necessary activities for these types of testing;

planning; analysis, design, and implementation; execution, monitoring, results reporting and

closure. We could do all of these activities in a fashion that is technically correct but still fail to

deliver any value to the business.

Software Quality Assurance

4242

The managers of these test groups may typically fail to identify the stakeholders or, worse

yet, in spite of being aware of the stakeholders, fail to work collaboratively with them to

determine how to connect the testing process to something valued by each of them.

Activity Details

Stakeholders have a stake in the testing and quality of a system. Can be broadly classify

as being either technical stakeholders or business stakeholders. A technical stakeholder is

someone who understands and participates in the design and implementation of the system.

In the following the technical stakeholders and their role are identified:

Programmers, lead programmers, and development managers:

They are directly involved in implementing the test items, and so testers and programmers

must have a shared understanding of what will be built and delivered. These stakeholders

receive defect reports and other test results. In many cases, they need to act on these results

(for example, when fixing a defect reported by testers).

Database administrators and architects, network architects and administrators, system

architects and administrators, and software designers:

These stakeholders are involved in designing the software and the hardware, the database,

and network environments in which the software will operate. As with programmers, they

receive defect reports and other test results, sometimes based on early static tests such as

design reviews. These stakeholders also may need to act on these results.

Technical support, customer support, system operators, and help desk staff:

These stakeholders support the software after it goes into production, including working with

users and customers to help them realize the benefits of the software. Those benefits come

from the features and quality of the software but can be compromised by defects in the

software that remained when it was released.

A business stakeholder on the other hand is someone who is not so concerned with the

design and implementation details but does have specific needs that the system must fulfil.

In the following the business stakeholders and their role are identified:

Marketing and sales personnel, business analysts, user experience professionals, and

requirements engineers:

These stakeholders work with actual or potential users or customers to understand their needs.

They then translate that understanding into specifications of the features and quality attributes

required in the software.

Project managers, product managers, and program managers:

 Unit 3. Verification and Validation

4343

These stakeholders have responsibilities to the organization for the overall success of their

projects, products, or programs, respectively. Success involves achieving the right balance

of quality, schedule, feature, and budget priorities. They often have some level of budget

authority or approval responsibility, which means that their support is essential to obtaining

the resources required by the test team. They will also often work directly with the test

manager throughout the testing activities, reviewing and approving test plans and test control

actions.

Users (direct and indirect) and customers:

Direct users are those who employ the software for work, play, convenience, transportation,

entertainment, or some other immediate need, while indirect users are those who enjoy some

benefit produced or supported by the software without actually employing it themselves.

Customers, who might also be direct or indirect users, are those who pay for the software.

They are the ones whose needs, ultimately, are either satisfied or not by the software (though

satisfaction is typically more of a spectrum than a binary condition).

The above identified list of stakeholder is by no means exhaustive but help to get one

started thinking about who are stakeholders. In addition, in some cases a stakeholder may be

simultaneously a business stakeholder and a technical stakeholder. So, don’t worry too much

about trying to place a particular stakeholder clearly into one category or another.

Having identified the stakeholders, the next step is to work directly with each stakeholder, or

a qualified representative of that stakeholder group, to understand their testing expectations

and objectives. That might sound easy enough, but when you start that process, you’ll find

that most stakeholders cannot answer a straightforward question such as, “What are your

testing expectations?” They simply will not have thought about it before, at least not with

any real clarity, so the initial answers will often be something like, “Just make sure the system

works properly before we ship it.”

This, of course, is an unachievable objective, due to two fundamental principles of testing:

the impossibility of exhaustive testing and

testing’s ability to find defects but not to demonstrate their absence.

You’ll need to discuss the individual stakeholder’s needs and expectations in terms of quality

and then the extent to which testing can realistically help the organization achieve their

objectives. These discussions may initially be hazy and often unrealistic, but ultimately they

should coalesce into a crisp, achievable mission and set of objectives. The specific mission

and objectives that you and your stakeholders arrive at will vary, so we can’t provide a one-

size-fits-all list here. However, a typical mission statement might be something along the

following lines:

To help the software development and maintenance teams deliver software that meets or

exceeds our customers’ and users’ expectations of quality.”

Software Quality Assurance

4444

Notice the word help here, which in this context means to assist (i.e., cooperate effectively

with) others involved in the software process to achieve some goal. In this case, the goal is

the delivery of quality software. You want to avoid mission statements like this one:

To ensure that our customers and users receive software that meets or exceeds their

expectations of quality.”

There are two problems with this mission statement. First, it leaves out the software

development and maintenance team, making software quality a testing problem entirely.

Second, it uses the word ensure, which in this context means to guarantee that customers

and users are satisfied or even delighted with the quality of the software. Due to the two

principles mentioned earlier, both of these flaws are fatal. Testing is an essential part of a

broader strategy for quality, but it is only a part of that strategy and can never guarantee

quality by itself.

Given a realistic and achievable mission for testing, what objectives might you establish that

would support achieving that mission? While your objectives will vary, typically we see one or

more of the following:

Find critical defects. Critical defects are those that would significantly compromise the

customers’ or users’ perception that their expectations of quality had been met; that is,

defects that could affect customer or user satisfaction. Finding defects also implies gathering

the information needed by the people who will fix those defects prior to release. The person

assigned to fix a defect can be a programmer (when the defect is in software), a business

analyst (when the defect is in a requirements specification), a system architect (when the

defect is in design), or some other technical or business stakeholder.

Find noncritical defects. While the main focus of testing should be on critical defects, there

is also value in finding defects that are merely annoyances, inconveniences, or efficiency

sappers. If not all noncritical defects are fixed, which is often the case, at least many of

them can be known. With such defects known—especially if the test team can discover and

document workarounds—technical support, customer support, system operators, or help desk

staff can more effectively resolve production failures and reduce user frustrations.

Manage risks to the quality of the system. While testing cannot reduce the risk of quality

problems to zero, anytime a test is run, the risk of remaining, undiscovered defects is reduced.

If we select the tests that relate to the most critical quality risks, we can ensure that the

maximum degree of quality risk management is achieved. If those tests are run in risk order,

the greatest degree of risk reduction is achieved early in the test execution period. Such a

risk-based testing strategy allows the project team to achieve a known and acceptable level

of quality risk before the software is put into production.

Build confidence. Organizations, especially senior managers in organizations, don’t like

surprises. At the conclusion of a software development or maintenance project, they want to

be confident that the testing has been sufficient, the quality will satisfy customers and users,

and the software is ready to release. While it cannot provide 100 percent surety, testing can

produce, and test results reporting can deliver, important information that allows the team to

have an accurate sense of how confident they should be.

 Unit 3. Verification and Validation

4545

Ensure alignment with other project stakeholders. Testing operates in the context of a larger

development and maintenance project and must serve the needs of the project stakeholders.

This means working collaboratively with those stakeholders to establish effective and efficient

procedures and service-level agreements, especially for processes that involve handoffs

between two or more stakeholder teams. When work products are to be delivered to or from

testing, then test managers must work with the relevant stakeholders to establish reasonable

entry criteria and quality gates for those work products.

At this point in the process, you will have established a clearly defined mission and objectives

for testing. What should be done with this important information? The best practice is to

document them in a test policy. The test policy can be a standalone document, or it can be a

page on a company intranet or wiki.

In addition to the testing mission and objectives, the test policy should talk about how testing

fits into the organization’s quality policy, if such a policy exists. If no such quality policy exists,

it’s important to avoid the trap of calling this document or page the “quality assurance policy”

because testing by itself cannot assure quality.

If your group has the phrase quality assurance in its title, and therefore you must call this

page the “quality assurance policy,” be careful to explain in the policy that testing is not a

complete solution to the challenge of delivering high-quality software.

Conclusion
This activity presented the process of defining test mission. Defining such a document is a first

step towards bringing real value to software quality. The preparation steps and elements of

test mission were also discussed.

 Assessment

1. Identify the stakeholders and develop a sketch test mission for an AVU
web portal.

Testing Strategies
Introduction

A testing strategy is a general approach to the testing process rather than a method of

devising particular system or component tests.

Software Quality Assurance

4646

Different testing strategies may be adopted depending on the type of system to be tested

and the development process used.

Activity Details

Generic Test Strategies

There are two different strategies available: Top-Down Testing and Bottom-Up Testing.

In Top-Down Testing, high levels of a system are tested before testing the detailed

components. The application is represented as a single abstract component with sub-

components represented by stubs. Stubs have the same interface as the component but very

limited functionality.

After the top-level component has been tested, its sub-components are implemented

and tested in the same way. This process continues recursively until the bottom - level

components are implemented. The whole system may then be completely tested. Top-down

testing should be used with top-down program development so that a system component

is tested as soon as it is coded. Coding and testing are a single activity with no separate

component or module testing phase.

If top-down testing is used, unnoticed design errors may be detected at an early stage in

the testing process. As these errors are usually structural errors, early detection means that

extensive re-design re-implementation may be avoided. Top-down testing has the further

advantage that we could have a prototype system available at a very early stage, which itself

is a psychological boost. Validation can begin early in the testing process as a demonstrable

system can be made available to the users.

Bottom-Up Testing is the opposite of Top-Down. It involves testing the modules at the lower

levels in the hierarchy, and then working up the hierarchy of modules until the final module

is tested. This type of testing is appropriate for object-oriented systems in that individual

objects may be tested using their own test drivers. They are then integrated and the object

collection is tested.

Conformance Testing

·Conformance testing, also known as compliance testing, is a methodology used in

engineering to ensure that a product, process, computer program or system meets a

defined set of standards. These standards are commonly defined by large, independent

entities such as the International Standard Organization (ISO), the Institute of Electrical

and Electronics Engineers (IEEE), the World Wide Web Consortium (W3C) or the European

Telecommunications Standards Institute (ETSI).

Conformance testing can be carried out by private companies that specialize in that service.

 Unit 3. Verification and Validation

4747

In some instances the vendor maintains an in-house department for conducting conformance

tests prior to the initial release of a product or upgrade. In the software industry, once the set

of tests has been completed and a program has been found to comply with all the applicable

standards, that program can be advertised as having been certified by the organization that

defined the standards and the corporation or organization that conducted the tests.

Doing Compliance check is quite straightforward. A set of standards and procedures are

developed and documented for each phase of the development lifecycle. Deliverables of

each phase needs to compare against the standards and find out the gaps. This can be done

by the team through the inspection process, but highly recommended for an independent

team to do it. After the end of the inspection process, the author of each phase should be

given a list of non compliant areas that needs to be corrected.

The inspection process should again be done after the action items are worked upon, to make

sure that the non conformance items are validated and closed.

Compliance testing is performed to ensure the compliance of the deliverables of each phase

of the development lifecycle. These standards should be well understood and documented

by the management. If required training sessions should be arranged for the team.

Compliance testing is basically done through the inspection process and the outcome of the

review process should be well documented.

Conclusion
This activity presented the concepts of testing strategies and compliance testing. Two main

testing strategies were described, the top down and bottom up test strategies. The process of

compliance testing was also highlighted.

 Assessment

1. State the factors that influences use of top down or bottom up testing
strategies

2. What are the key aspects that drives compliance testing?

Validating Preliminary Designs Through Prototyping
Introduction

The old saying, “a picture speaks a thousand words” captures what prototyping is all about.

Prototyping use visuals to describe thousands of words’ worth of design and development

specifications for a system’s look and behavior.

Software Quality Assurance

4848

In an iterative approach to system design, prototyping is the process of quickly building up

the future state of a system, be it a website or application, and validating it with a broader

audience of users, stakeholders, developers and designers. Doing this rapidly and iteratively

generates feedback early and often in the process, improving the final design and reducing

the need for changes during development. Prototypes range from rough paper sketches

to interactive simulations that look and function like the final product. The key to successful

prototyping are revising quickly based on feedback and using the appropriate prototyping

approach. Prototyping helps developers experiment with multiple approaches and ideas.

It facilitates discussion through visuals instead of words, it ensures that everyone shares a

common understanding, and it reduces risk and avoids missed requirements, leading to

better design rapidly.

Activity Details

Prototyping involves multiple iterations of a three-step process:

Prototype - Convert the users’ description of solution into a build up, factoring in user

experience standards and best practices.

Review - Share the prototype with users and evaluate whether it meets their needs and

expectations.

Refine - Based on feedback, identify areas that need to be refined or further defined and

clarified.

The prototype usually starts small, with a few key areas built up, and grows in breadth and

depth over multiple iterations as required areas are built out, until the prototype is finalized

and handed off for development of the final product. The rapidness of the process is most

evident in the iterations, which range from real-time changes to iteration cycles of a few days,

depending on the scope of the prototype.

Scoping a Prototype

The word prototype often captures images of a coded, fully functioning version of an

application or interface. Prototypes are not intended to evolve into fully functional solutions,

but are meant to help users visualize and craft the user experience of the final product. With

that in mind, when scoping a prototype, decide on a few key issues before beginning any

prototyping work.

What Needs to Be Prototyped?

Good candidates for prototyping include complex interactions, new functionality and changes

in workflow, technology or design.

 Unit 3. Verification and Validation

4949

For example, prototyping search results is useful when you want to depart significantly from

the standard search experience; say, to introduce faceted search or the ability to preview a

document without leaving the search results.

How Much Should Be Prototyped?

A good rule of thumb is to focus on the 20% of the functionality that will be used 80% of the

time; i.e. key functionality that will be used most often. Remember, the point of prototyping is

to showcase how something will work or, in later stages, what the design will look like, without

prototyping the entire product.

Find the Story

After identifying the areas to be prototyped, merge them together into one or more

scenarios: identify the coherent paths through the user experience that the prototype

simulates. For example, a website that sells shoes, one scenario could be “Boring Joe”

buying the exact same Nike running shoes that he bought six months ago, while another

scenario could be “Exploring Sam” browsing through size 10s to find a pair of Oxfords and

pair of loafers that interest him.

Plan Your Iterations

The entire prototype is usually not built in a single iteration but rather piece by piece. A

good approach is to start prototyping broadly and widely and then put focus into selected

areas of the solution. For a website, this would mean building out the “home page” and

landing pages for the main sections in the first iteration (sometimes referred to as a horizontal

prototype) and then reviewing and revising that framework. Subsequent iterations could

narrow down into one or more sections of the website (a vertical prototype); for a media

download website, this could be the steps a user would take to find a video and to download

it, or how they would manage the media in their online library.

Choose the Appropriate Fidelity

Fidelity refers to how closely a prototype resembles the final solution. There are multiple

dimensions of fidelity, and prototypes can lie anywhere on the spectrum for each of these

dimensions. Figure 1, demonstrate different fidelity level.

Software Quality Assurance

5050

Figure 1: Fidelity Levels

Depending on the stage of the design process and the goals of the prototype, select the

appropriate fidelity as shown in Figure 1 for each of the following dimensions:

Visual fidelity (sketched styled)

Look and feel are the most noticeable dimension of a prototype’s fidelity and, if not properly

selected, can sidetrack prototype reviews. For example, going “hi-fi” too soon and users

will focus on visual design, which is not appropriate in early stages. From a visual standpoint,

prototypes do not have to be pixel perfect but should be proportional. For example, if the left

navigation area has to occupy one-fifth of a 1024-pixel screen, it does not need to be exactly

1024 pixels wide, as long as it is proportionally depicted in the prototype. As prototyping

progresses through the design cycle, increase visual fidelity as needed by introducing

elements of style, color, branding and graphics.

Functional fidelity (static interactive)

Does the prototype reveal how the solution will work (static) or does it appear to be fully

functional and respond to user input (interactive)? This dimension is less of a distraction to

users, but adding interactivity in subsequent iterations increases functional fidelity and allows

the prototype to be used for usability testing and training and communications.

Content fidelity (lorem ipsum real content)

Another dimension that often distracts users is the content that is displayed in the prototype.

Twisting lines and dummy text like lorem ipsum are useful to avoid in early stages of

prototyping. But as the prototype is refined, evaluate the need to replace dummy text with

real content to get a feel for how it affects the overall design.

 Unit 3. Verification and Validation

5151

The Prototyping Spectrum
Low Fidelity

The quickest way to start prototyping is also the easiest: putting pen/pencil to paper.

Sketching on paper is a low-fidelity approach that anyone can do; no special tools or

experience required. Most often used during the early stages of a design cycle, sketching is

a quick way to create rough builds of design approaches and concepts and to get feedback

from users. Paper prototyping is ideal during brainstorming and conceptualization and can be

done alone in a workspace with a sketchbook or in a group with a flip chart (or whiteboard)

and markers. Figure 2, presents paper sketches to illustrate low fidelity.

Figure 2: Low Fidelity Prototypes

Lying at the low-fidelity end of the prototyping spectrum, paper prototypes are static and

usually have low visual and content fidelity. This forces users to focus on how they will use the

system instead of what it will look like, and it makes designers more open to changes based

on user feedback. Low-fidelity prototyping is easier to learn and lets you make changes easily

and quickly.

Medium Fidelity

As we start using computer-based tools such as Visio and Omnigraffle to prototype, the

fidelity increases on most fronts, yielding medium-fidelity prototypes. Wireframes, task flows

and scenarios that are created with these tools take more time and effort but look more

formal and refined.

Software Quality Assurance

5252

While visual elements of branding, colors and style can be introduced, prototypers often

stay away from them, focusing instead on demonstrating the behavior of the application.

Interactivity can be simulated by linking pages or screens, but functional fidelity here is

medium at best. These prototypes are best suited to determining whether user needs are met

and whether the user experience is optimal. A screenshot in Figure 3, illustrates a medium

fidelity prototype.

Figure 3: Medium Fidelity Prototype

There are two reasons why one might intentionally make a medium-fidelity prototype not look

like a medium-fidelity prototype:

The first is that, by using Balsamiq or sketchy Visio stencils to make the prototype look low

fidelity, you force users to view it as a draft or work in progress, rather than a polished and

finished product.

The second is that, by giving the prototype a high visual fidelity (for instance, in a

comprehensive layout done in Photoshop), you get the user to focus on the visual design and

look and feel, including colors, fonts, layout, logo and images.

The speed of medium-fidelity prototyping is achieved with templates, stencils and reusable

widgets and elements. It gets faster as you become more proficient with your tools of choice.

 Unit 3. Verification and Validation

5353

High Fidelity

High-fidelity prototypes are the most realistic and are often mistaken for the final product, but

they are usually time-intensive. A screenshot in Figure 4, illustrates a high-fidelity prototype.

A few years ago, the only way to create high-fidelity prototypes was to actually code using a

programming language, which often required the designer and developer to work together.

These days, however, application-simulation tools allow non-technical users to drag and

drop UI widgets to create high-fidelity prototypes that simulate the functionality of the

final product, even for business logic and database interactions. Axure and iRise are some

examples of application-simulation tools that can be used to create high-fidelity prototypes.

Figure 4: High-Fidelity Prototype

These prototypes are appropriate when high visual and functional fidelity is required;

for example, when introducing a new technology (say, when moving from a mainframe

application (yes, they still exist!) to a desktop solution. Most of these prototypes cannot be

converted to usable code, but they serve as an excellent reference for developers. These are

also useful for conducting usability testing and training users.

High-fidelity prototyping is relatively rapid, considering the level of interactivity and fidelity

involved, and it can be accelerated by using drag-and-drop simulation tools. In addition,

some of these tools facilitate the gathering of user feedback and documenting requirements,

which further speed up the design process.

Software Quality Assurance

5454

Even though you do not need to learn a new programming language, these tools do require

a learning effort.

Selecting a Fidelity Level

In choosing the prototype fidelity, there is no one correct approach. Most designs of new

products are best started with sketches, then moving to either medium- or high-fidelity

prototypes, depending on the complexity of the system and the requirements of the

dimensions of fidelity. For example, in a pharmaceutical industry application development

project, starting from whiteboards to interactive prototypes that have high functional and

content fidelity but low visual fidelity, the client may care less about the look and feel

than about adhering to corporate guidelines. On the other hand, in a retail application

development project, an interactive prototype may need to have high visual and functional

fidelity. The content fidelity does not matter because the clients would be reusing content

and possibly already familiar with it. To them, the look and feel and interactive experience

matter more, especially, being their first implementation of the application.

Selecting Tools

Depending on your approach, you have a wide variety of tools to choose from. Each tool has

its own feature set and strengths. Based on your needs and the requirements of the projects

you work on, evaluate which tool would be most appropriate. Here are some questions to

consider when evaluating tools:

1. How easy is it to learn and use the tool?

2. Is it flexible to support prototypes for Web, packaged and custom software
applications, as well as desktop and mobile applications?

3. Is there a repository of reusable stencils, templates or widgets available?

4. How easy is it to share the prototype with others for review? Can their
feedback be captured using the tool?

5. How easy is it to make changes on the fly or to incorporate feedback?

6. Does it have any collaboration features, such as allowing multiple people to
work on it at the same time?

7. What are the licensing terms and costs?

Conclusion
In this activity the prototyping method was present. Prototyping provide a quick way of

building product design due to its visual way of presenting preliminary designs for user

reviews.

 Unit 3. Verification and Validation

5555

This in-build validation mechanism by stakeholders involvement make prototyping deliver

better design rapidly.

 Assessment

1. Explain the concepts of low fidelity, medium fidelity and high fidelity
prototypes

2. List any five prototyping tools and for each briefly evaluate its capability

 UNIT SUMMARY

This unit presented the concepts of verification and validation and associated methods for

improving software quality. The unit highlighted the process of test mission creation along

with a discussion on testing strategies. The prototyping method was thoroughly discussed as

a mechanism for rapid design development.

 Unit Assessment
Check your understanding!

Miscellaneous Questions

Instructions

a. Using examples distinguish between validation and verification

b. Considering the main testing strategies described using examples the
environment that suite each for use.

c. Using an AVU portal as a reference. Which aspects when developing such a
portal might be suitable for prototyping?

Software Quality Assurance

5656

Grading Scheme

As per the offering Institution

Feedback

mailto:njulumi@gmail.com

Unit Readings and Other Resources

The readings in this unit are to be found at course level readings and other resources.

 Unit 4. Quality Managemnet

5757

Unit 4. Quality Management
Unit Introduction
The quality of software has improved significantly over the past two decades. One reason for

this is that companies have used new technologies in their software development process

such as object-oriented development, CASE tools, etc. In addition, a growing importance

of software quality management and the adoption of quality management techniques from

manufacturing can be observed. However, software quality significantly differs from the

concept of quality generally used in manufacturing mainly for the next reasons:

1. The software specification should reflect the characteristics of the product
that the customer wants. However, the development organization may
also have requirements such as maintainability that are not included in the
specification.

2. Certain software quality attributes such as maintainability, usability, reliability
cannot be exactly specified and measured.

3. At the early stages of software process it is very difficult to define a complete
software specification. Therefore, although software may conform to its
specification, users don’t meet their quality expectations.

The software quality management is split into three main activities:

1. Quality assurance - The development of a framework of organizational
procedures and standards that lead to high quality software.

2. Quality planning - The selection of appropriate procedures and standards
from this framework and adapt for a specific software project.

3. Quality control - Definition of processes ensuring that software development
follows the quality procedures and standards.

Quality management provides an independent check on the software and software

development process. It ensures that project deliverables are consistent with organizational

standards and goals. It is general, that the quality of the development process directly affects

the quality of delivered products. The quality of the product can be measured and the

process is improved until the proper quality level is achieved. Figure 1, illustrates the process

of quality assessment based on this approach.

Software Quality Assurance

5858

Figure 1: Process based quality assessment

In manufacturing systems there is a clear relationship between production process and

product quality. However, quality of software is highly influenced by the experience of

software engineers. In addition, it is difficult to measure software quality attributes, such as

maintainability, reliability, usability, etc., and to tell how process characteristics influence these

attributes. However, experience has shown that process quality has a significant influence on

the quality of the software. Process quality management includes the following activities:

1. Defining process standards.

2. Monitoring the development process.

3. Reporting the software.

Unit Objectives

• Upon completion of this unit you should be able to:

• Describe the quality management concept

• Develop a framework of organizational procedures and standards that lead to
high

• quality software.

• Select appropriate procedures and standards and adapt for a specific software
project.

• Apply the quality procedures and standards.

 Unit 4. Quality Managemnet

5959

 KEY TERMS

• Quality management: Independent check on the software and
software development process to promote quality

• Quality standards: a framework for implementing the quality
assurance process

• Quality plan: Defines the quality requirements of software and
describes how these are to be assessed.

• Quality control: monitoring the software development process
to ensure that quality assurance procedures and standards are
being followed.

Learning Activities

Quality Assurance and Standards

Introduction

Quality assurance is the process of defining how software quality can be achieved and how

the development organization knows that the software has the required level of quality. The

main activity of the quality assurance process is the selection and definition of standards that

are applied to the software development process or software product.

Activity Details

There are two main types of standards, the product standards and the process standards.

The product standards are applied to the software product, i.e. output of the software

process. The process standards define the processes that should be followed during software

development. The software product standards are based on best practices and they provide a

framework for implementing the quality assurance process.

The development of software engineering project standards is a difficult and time consuming

process. National and international bodies such as ANSI and the IEEE develop standards

that can be applied to software development projects. Organizational standards, developed

by quality assurance teams, should be based on these national and international standards.

Table1 shows examples of product and process standards.

Software Quality Assurance

6060

Table 1: Examples of product and process standards

Product standards Process standards

Requirements

document

structure

Project plan

approval process

Method header

format

Version release

process

Java programming

style

Change control

process

Change request

form

Test recording

process

ISO Quality Standards
ISO 9000 is an international set of standards that can be used in the development of a quality

management system in all industries. ISO 9000 standards can be applied to a range of

organizations from manufacturing to service industries. ISO 9001 is the most general of these

standards. It can be applied to organizations that design, develop and maintain products

and develop their own quality processes. A supporting document (ISO 9000-3) interprets

ISO 9001 for software development. The ISO 9001 standard isn’t specific to software

development but includes general principles that can be applied to software development

projects. The ISO 9001 standard describes various aspects of the quality process and defines

the organizational standards and procedures that a company should define and follow during

product development. These standards and procedures are documented in an organizational

quality manual. The ISO 9001 standard does not define the quality processes that should

be used in the development process. Organizations can develop own quality processes and

they can still be ISO 9000 compliant companies. The ISO 9000 standard only requires the

definition of processes to be used in a company and it is not concerned with ensuring that

these processes provide best practices and high quality of products. Therefore, the ISO 9000

certification doesn’t means exactly that the quality of the software produced by an ISO 9000

certified companies will be better than that software from an uncertified company.

Documentation standards

Documentation standards in a software project are important because documents can

represent the software and the software process. Standardized documents have a consistent

appearance, structure and quality, and should therefore be easier to read and understand.

There are three types of documentation standards:

 Unit 4. Quality Managemnet

6161

1. Documentation process standards - These standards define the process
that should be followed for document production.

2. Document standards - These standards describe the structure and
presentation of documents.

3. Documents interchange standards - These standards ensure that all
electronic copies of documents are compatible.

Conclusion
The main activity of the quality assurance process is the selection and definition of standards

that are applied to the software development process or software product. This activity

presented the two types of standards applied in software quality assurance process. The ISO

and documentation standards were also discussed.

Assessment

What are the two type of standards

1. Explain the role of standard in software quality assurance

2. In which category of standard does each of the following falls?

3. ISO 9000 standards

Documentation standards

Quality Planning

Introduction

Quality planning is the process of developing a quality plan for a project.

Activity Details

The quality plan defines the quality requirements of software and describes how these are to

be assessed. The quality plan selects those organizational standards that are appropriate to a

particular product and development process. Quality plan has the following parts:

1. Introduction of product.

2. Product plans.

3. Process descriptions.

4. Quality goals.

Software Quality Assurance

6262

5. Risks and risk management.

The quality plan defines the most important quality attributes for the software and includes a

definition of the quality assessment process. Table 2, shows generally used software quality

attributes that can be considered during the quality planning process.

Table 2: Software quality attributes

Safety Understandability Portability

Security Testability Usability

Reliability Adaptability Reusability

Resilience Modularity Efficiency

Robustness Complexity Learnability

This activity described the process of quality planning.

 Assessment
1. What is quality planning?

2. Identify the main parts of a quality plan

Quality Control
Introduction

Quality control provides monitoring the software development process to ensure that quality

assurance procedures and standards are being followed. The deliverables from the software

development process are checked against the defined project standards in the quality control

process. The quality of software project deliverables can be checked by regular quality

reviews and/or automated software assessment. Quality reviews are performed by a group

of people. They review the software and software process in order to check that the project

standards have been followed and that software and documents conform to these standards.

Automated software assessment processes the software by a program that compares it to the

standards applied to the development project.

 Unit 4. Quality Managemnet

6363

Activity Details

Quality reviews

Quality reviews are the most widely used method of validating the quality of a process or

product. They involve a group of people examining part or all of a software process, system,

or its associated documentation to discover potential problems. The conclusions of the review

are formally recorded and passed to the author for correcting the discovered problems. Table

3, describes several types of review, including quality reviews.

Table 3: Types of review

Review type Principal purpose

Design or

program

inspections

To detect detailed errors in the

requirements, design or code.

Progress

reviews

To provide information for management

about the overall progress of the project.

Quality reviews To carry out a technical analysis of product

components or documentation to find

mismatches between the specification

and the component design, code or

documentation and to ensure that defined

quality standards of the organization have

been followed.

Software measurement and metrics
Software measurement provides a numeric value for some quality attribute of a software

product or a software process. Comparison of these numerical values to each other or to

standards draws conclusions about the quality of software or software processes. Software

product measurements can be used to make general predictions about a software system and

identify anomalous software components.

Software metric is a measurement that relates to any quality attributes of the software system

or process. It is often impossible to measure the external software quality attributes, such as

maintainability, understandability, etc., directly. In such cases, the external attribute is related

to some internal attribute assuming a relationship between them and the internal attribute is

measured to predict the external software characteristic. Three conditions must be hold in this

case:

1. The internal attribute must be measured accurately.

Software Quality Assurance

6464

2. A relationship must exist between what we can measure and the external
behavioural attribute.

3. This relationship has to be well understood, has been validated and can be
expressed in terms of a mathematical formula.

The measurement process

A software measurement process as a part of the quality control process is shown in Figure 2.

The steps of measurement process are the followings:

4. Select measurements to be made - Selection of measurements that are
relevant to answer the questions to quality assessment.

5. Select components to be assessed - Selection of software components to
be measured.

6. Measure component characteristics -The selected components are
measured and the associated software metric values computed.

7. Identify anomalous measurements - If any metric exhibit high or low values
it means that component has problems.

8. Analyze anomalous components - If anomalous values for particular metrics
have been identified these components have to be examined to decide
whether the anomalous metric values mean that the quality of the component
is compromised. Generally each of the components of the system is analyzed
separately. Anomalous measurements identify components that may have
quality problems.

Figure 2: The software measurement process

Product metrics

The software characteristics that can be easily measured such as size do not have a clear and

consistent relationship with quality attributes such as understandability and maintainability.

Product metrics has two classes:

 Unit 4. Quality Managemnet

6565

Dynamic metrics - These metrics (for example execution time) are measured during the

execution of a program.

Static metrics - Static metrics are based on measurements made of representations of the

system such as the design, program or documentation

Dynamic metrics can be related to the efficiency and the reliability of a program. Static

metrics such as code size are related to software quality attributes such as complexity,

understandability, maintainability, etc.

Conclusion
This activity presented quality control a mechanism for monitoring the software development

process to ensure that quality assurance procedures and standards are being followed. The

quality reviews method for validating the quality of a process or product was highlighted.

Software measurement and metrics were discussed as instruments for assessing quality

attributes of the software system or process.

 Assessment

1. What is quality reviews?

2. Explain the steps for software measurement process?

 UNIT SUMMARY

This unit presented quality management and quality management techniques. Quality

management provides an independent check on the software and software development

process. It ensures that project deliverables are consistent with organizational standards

and goals. The activities of quality management were discussed including quality assurance,

quality planning and quality control.

Software Quality Assurance

6666

 Unit Assessment
Check your understanding!

Miscellaneous Questions

Instructions

• Using examples distinguish between static and dynamic metrics

• Discuss the interdependence between the quality management activities.

Grading Scheme

As per the offering Institution

Feedback/ Answers

mailto:njulumi@gmail.com

Unit Readings and Other Resources

The readings in this unit are to be found at course level readings and other resources.

 Course Assessment
Comprehensive Exercise

Instructions

Assume that you have been tasked with the development of the AVU portal:

• Develop a sketch SQA plan

• Define the quality factors that may apply and identify any reliability critical
aspects of the portal

• Draw a problem diagram that model the AVU portal

• Develop a sketch definition of standards and procedures which should be
applied during each phase of development

• Develop a draft scenario of portal measurement process

 Unit 4. Quality Managemnet

6767

Grading Scheme

As per the offering Institution grading policy

Answers

mailto:njulumi@gmail.com

Course References
Gerard O’Regan, Introduction to Software Quality, Springer, 2014

Jeff Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement , IEEE Computer Society, 2005

Darrel Ince, An Introduction to Software Quality Assurance and Its Implementation, McGraw-

Hill, 1994

https://en.wikipedia.org/wiki/Problem_frames_approach[Accessed 23/02/2016]

Alistair Sutcliffe, User-Centred Requirements Engineering, Springer-Verlag London Limited

2002

https://en.wikipedia.org/wiki/Requirements_analysis [Accessed 23/02/2016]

David J. Gilmore, Russel L. Winder and Francoise Detienne, User-Centred Requirements for

Software Engineering Environments, Springer-Verlag Berlin Heidelberg GmbH, 1994

http://www.rbcs-us.com/documents/Defining-Testing-Article.pdf [accessed 24/02/2016]

http://www.sqa.org.uk/e-learning/SDPL03CD/page_16.htm[accessed 24/02/206]

http://searchsoftwarequality.techtarget.com/definition/conformance-testing[accessed

[24/02/2016]

Paul Ammann and Jeff Offutt, INTRODUCTION TO SOFTWARE TESTING, CAMBRIDGE

UNIVERSITY PRESS, 2008

William E. Perry, Effective Methods for Software Testing, Third Edition, Wiley Publishing, Inc.,

Indianapolis, Indiana, 2006

http://www.softwaretestinghelp.com/what-is-conformance-testing/[accessed 24/02/2016]

https://www.smashingmagazine.com/2010/06/design-better-faster-with-rapid-prototyping/

[accessed 24/02/2016]

To contact parents and sister

2017 AVU

The African Virtual University
Headquarters

Cape Office Park

Ring Road Kilimani

PO Box 25405-00603

Nairobi, Kenya

Tel: +254 20 25283333

contact@avu.org

oer@avu.org

The African Virtual University Regional
Office in Dakar

Université Virtuelle Africaine

Bureau Régional de l’Afrique de l’Ouest

Sicap Liberté VI Extension

Villa No.8 VDN

B.P. 50609 Dakar, Sénégal

Tel: +221 338670324

bureauregional@avu.org

